
November,
1990

Volume 1,
No.9

The Journal of Apple II Programming $4.00

Picture Perfect in Pascal: Phil
Doto Decodes SHR

Adventure

Special
Introductory
Price $9.95

The Devil's Demise - is an exceptional graphic
adventure game that comes complete on a single 3.5
inch disk with on-screen instructions, a map, demo
play option, and dungeons which were too vast and
expansive to fit on 5.25" disks.

The object is to search out and destroy the evil
WRAITH to save the mythical island of Araithia. To
succeed at this quest the adventurer must fend off many
monsters, learn magic spells, and buy weapons and
armor to defeat the evil WRAITH.

An excellent adventure for Apple lie, lie, and IIGS
computers with a 3.5" drive. It has a retail price of
$14.95, but you can take advantage of our introductory
offer and order it direct from Nite Owl for only $9.95
before 12/31190.

"I have never

in my life seen

a better way to

spend such a

modest amount

...J...J...J Font CoUection ...J...J...J

The A2-Central staff has spent years searching out and
compiling hundreds of IIGS fonts. These fonts are
packed onto eight 3.5 inch disks. They work with IIGS
paint, draw, and word processing programs. Includes a
program to unpack them, an Appleworks data file that
lists the available f onts, and picture files that let you
view the various fonts.

This collection includes over 8Mb of fonts. Due to the
large volume of this collection, a hard disk is highly
recommended. Only $39 for this valuable collection.

In Depth:

Close Out!
It was more than just "Bad News" when Tech Alliance

ceased publication of Call -A.P.P.L.E. magazine. It was a
major loss of technical information and support for the
Apple II. In order to help keep some of this information
available, we have acquired the last remaining copies of
their manual, "All About Applesoft - In Depth".

It is written for the highly technical, Applesoft and
Assembly language programmer. It includes a list of
internal entry points in the Applesoft ROM and describes
how to use them. This classic is now out of print, in short
supply, and available from Nite Owl for $20. Limit 1

Keep it Cool and Quiet
When you start adding more memory and additional

interface cards, your IIGS computer can overheat. This can
cause malfunctions and shorten the life of your computer.

The GS Super Cooler fan fastens to the internal power
of money", supply and is powered from the standard fan jack on the

motherboard. They are easily installed, cause no audio line
writes Neil Shapiro in his review of WRAITH interference, and they are quieter and less expensive than
in the July 1990 issue of Nibble magazine. other alternatives. They are available for $24 each.

Call: (913) 362-9898
----------------------------~~--~~~~~--,~~~~~~----~

FAX: (913) 362-5798 -------------,
Nite Owl Productions 1

Satisfaction Guaranteed: If you are not completely 5734 L 1
satisfied with anything you order from Nite Owl, return amar A venue A
it within 30 days for a prompt refund or replacement. Mission, KS 66202-2646 _____________ _j

Ship to:

Expires

Kits $ 14.95

Nite Owl Journal 3.5 $ 9.95

WRAITH Adventure $ 9.95

GS Super Cooler Fan $ 24.00

Font Collection $ 39.00

Please include $2 shipping and
handling I $5 for overseas orders. TOTAL

Kansas residents add 6% sales tax.
Prices may Change Without Notice

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Apple llgs Editor
Classic Apple Editor
Contributing Editors

Subscription Services

Ross W. Lambert
Eric Mueller
Jerry Kindall
Jay Jennings
David Gauger
Steve Stephenson
Mike Westerfield
Cecil Fretwell
Tamara Lambert
Karen Redfield

Subscription prices in US dollars:

• magazine
• monthly disk

1 year $32
1 year $69.95

2 years $60
2 years $129

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8116 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at
any time. Ariel Publishing's LIABILITY FOR ERRORS AND
OMISSIONS IS LIMITED TO THIS PUBLICATION'S
PURCHASE PRICE. In no case shall Ariel Publishing, Inc.
Ross W. Lambert, the editorial staff, or article authors be
liable for any incidental or consequential damages, nor for
ANY damages in excess of the fees paid by a subscriber.

Subscribers are free to use program source code printed
herein in their own compiled, stand-alone applications with
no licensing application or fees required. Ariel Publishing
prohibits the distribution of source code printed in our pages
without our prior permission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249 (voice) or (509)
689-3136 (fax).

Apple, Apple II, llgs, lie, lie+, lie, AppleTalk, and Macintosh
are all registered trademarks of Apple Computers, Inc.

We here at Ariel Publishing freely admit our shortcomings,
but nevertheless strive to bring glory to the Lord Jesus
Christ.

The
Publisher's
Pen
by Ross W. Lambert

News, Blues, and
Marketing 102
Roger Wagner Publishing announced
both HyperStudio version 2.1 and the HyperStudio
runtime module. Version 2.1 has numerous im
provments in both paint tools and stack editing
(you can insert a card in the middle of a stack now,
for example). Best of all, the new update is free to
registered owners who request it. Folks, ya gotta
love (and reward) this kind of loyalty to customers.

The runtime module is a pretty big deal for those
who have commercial quality stacks that they want
to sell (there is a nominal license fee). Your market
now extends to all GS owners, not just HyperStu
dio owners. This is the first time that I have person
ally been tempted to enter the stack creation game
at a serious level. Roger's number is (619) 442-
0522. You and I both should probably give him a
call.

In another "customer first" gesture, RWP has re
leased a very special pair of HyperStudio XCMDs to
the online services (or you can purchase them di
rectly from RWP for a mere $10). These two add
ons make stacks more accessible to those folks
using a switch controlled input device (such as
those folks with physical disabilities might use - for
more info about switches, see David Gauger's Hard
ware Hacker column this month. Perhaps you can
design both hardware and software for the
handicapped!). One XCMD highlights all of the but
tons on a card one by one. If you toggle a switch
while a button is highlighted, it is selected. Cool
idea. The other scrolls text automatically (I don't
know the details on this one).

8/11(6

My hat is off to Roger and Co. for their attention to
this oft neglected market, and for making the soft
ware easy to acquire.

Since my wife is a special education teacher, I'm
pretty familiar with the difficulties the handicapped
sometimes have with off the shelf software. I can
tell you straight out that the special education
marekt is easy to identify and inexpensive to mar
ket to (via mailing lists and educational journals).
There is money to be made here. Get to it. You can
have the dual pleasures of making a buck and real
ly helping someone. Good capitalists are not neces
sarily selfish! (oops, a little of my politics creeping
in there ...)

Complete Technologies, Inc. recently
acquired all of the Ilgs languages produced by the
TML folks. The head honcho at Complete is none
other than Vince Cooper, the former Ilgs product
manager I developer for TML. This bodes well for
TML Pascal and TML Basic owners. I think that
Vince will be giving you (and your computer) the at
tention you deserve. Congratulations, Vince.

The following is yet another tirade of
epic proportions. Read at your own risk.

Before I get too wound up, let me emphasize that I
am fully aware that the October 15th Mac rollout
was never billed as anything but a Mac rollout. I
was not the least surprised that the Apple II was to
tally ignored, nor was I upset by it on its own mer
its.

What upsets me is that the Apple II has not had a
significant rollout of its own since the 1986 intro
duction of the computer. Yeah, the SCSI card is
nice, as is the graphic overlay card. But where
would the Mac market be if the SE and a couple
cards had been the only additional product in the
same time span? The cards and the extra RAM are
bread crumbs. Call me an ingrate if you want, but
they are just bread crumbs to me.

With that excuse, I now unsheath the sword and

begin slashing ...

Apple Computer, Inc.'s October 15th rollout
of the new Macintosh models has many IIgs devel
opers singing the blues. It has me again shaking
my head in bemusement about Apple's marketing
plans. I'm rooting for the success of the new Mac's
(I'm a Mac developer, too), but Apple's insistence
that the "Macintosh is the best buy for education"
(almost a direct quote from one of the presentations
in a major metropolitan area). has me in near hys
teria (from both laughter and fear) .

Somebody send me the name of an Apple marketing
policy maker and I'll send a copy of this issue with
the following highlighted in magic marker:

An open letter to Apple's marketing pol
icy makers:

Dear Apple Marketing,

READ MY LIPS: You will not "drive" the education
market in the same fashion that you've attempted
to direct the business and consumer markets (and
since when is a fairly discouraging 10% of the mar
ket really considered "driving" anybody, anyway?)
Educators have their own agenda, and Apple
marketing does not seem to have the slightest clue
as to what it is.

I ought to know, I have only recently left the teach
ing profession. My wife still teaches.

The Macintosh does have its place in education,
perhaps in the offices and journalism departments.
But when the cost of software is factored in, the
Apple Jigs is the best buy for education. Do you
know what the one single lesson educators learned
from the "computer revolution" of the 1980's was?
A computer ain't worth (fill in your favorite exple
tive) without software. It took teachers 10 years to .
evaluate and acquire the software they now have.
Apple is asking educator's to throw away their en
tire software library and buy a Mac.

We live in fear of doing that. We won't do that. The
Apple II emulator card is not an answer, either, as
many schools have invested heavily in GS software.
Besides, if you abandoned us once, how do we
know you won't be saying the same thing about
some future Apple in a couple years? (''Yessiree, la
dies and gents, get this neat new totally incompati
ble machine we call the Golden and you can get a
Mac emulator for it. The Golden is undoubtedly the
best buy for education ")

It doesn't take a rocket scientist to recognize the ol'
bait and switch. And that is what current Apple
marketing strategy feels like to educators. Contrast
that to IBM soft-
ware. The vast
majority of 'wares

Oh, but there's one last gotcha, Mr. Apple market
er: you may want to bleed the last dollar from the II
market with no expenditure of marketing or hard-

ware, but there
aren't going to be
any developers

developed for the
original PC will
run just fine on a
screamin' state of
the art 486
(yukky though
they be). That is
the real reason
educators are

''I guess that if a 1 0% market
share is considered successful in
the business market, maybe it is
okay for education, too, eh ?"

left writing for
your bleeding
machine. Al
ready many - if
not most - of the
best have left for
Amiga and MS
DOS land. A few

switching to MS-
DOS. They sense
a stability and a
continuity.

Schools are willing to buy Ilgs's in the same man
ner they acquire all new equipment - gradually, as
older things wear out. That the schools didn't run
out and buy IIgs's in 1988 as fast as they bought
II's in 1983 should be no surprise (espcially in light
of the goings-on at Apple at that time) . To think
educators will spend money otherwise is to misun
derstand the education market entirely. Which is,
of course, what Apple has done.

There's one other issue totally missed here, too: ed
ucators are only part-time computer users. Very
part time. The thought of having to leam a new ma
chine - no matter how "friendly" - petrifies the bulk
of the lot. That probably sounds bizarre to you all,
but I know that it is a sort of subliminal factor in
educator's somewhat knee-jerk reaction to the Mac.

Patience, persistence, and some attention to the II
line (Le. a new GS CPU with real marketing support)
would go a long way towards getting educators to
buy Ilgs's. Let me emphasize the point: the Ilgs
must have some marketing - on television as well as
in print - if Apple has any real hope of making
money in education. If Apple reps hocked GS's to
educators as hard as they're pushing Macs, they'd
find the GS much easier to sell than the Mac. Edu
cators want to buy GS's, but Apple seems to be
looking the other way and offering excuses when
asked about it. 'We cannot comment on unan
nounced products. But we got some terrific Macs
coming out.. ."

Am I the only one that sees the incongruity there?

I guess that if a 100/o market share is considered
successful in the business market, maybe it is okay
for education, too, eh?

My Plan

have gone Mac
(like me), but it
ain't the majority
by any means.

I'll quit throwing stones and outline a promotion
that would make the II a billion dollar machine
again (Alright, I'm conceited and I admit it. I really
believe that I could sell a jillion GS's). By the way,
it is not really the details of my ideas that are im
portant, anyway.

The theme is "Home Work". The entire campaign
would focus around two images. The first is Joe Jr.
He's working on a lie+ at school, maybe doing
something in AppleWorks. Then he comes home
and finishes up his project on a IIgs (or better yet,
an 8mhz IIgs+).

The second image is that of Joe's father (or mother),
slaving away over a spreadsheet at the office on an
obviously blue machine (if that is offensive, then
make it a Mac). When Joe Sr. comes home, he pops
his disk into his GS and starts working on the same
spreadsheet, easily imported into AppleWorks GS.

The closing line: 'The Apple Ilgs: for your Home
Work." If it is a 1V spot, the announcer ought to
pause slightly between "Home" and 'Work".

These images and that simple statement would con
vey a wealth of information. First, the IIgs is com
patible with all of Joe Jr.'s software at school. A
large percentage of home computers (I believe) are
sold with children in mind. This push for the home
market would pay off with increased sales in the
education market. We teachers want our students
using computers at home because we cannot give
them enough time on them at school. It is nigh
unto impossible. The home market and the edu
cation market play off each other.

8/ILS

The point of seeing Joe Sr. popping his disk into the
Jigs and working on his spreadsheet (this necessi
tates MS-DOS and Macintosh FST's!) communi
cates the notion that real work can be done on the
GS, and that it can read the file formats of other
computers. We all know this is no stretch of the
truth! And if Apple would bundle AppleWorks GS
with the thing .. .

I bounced my ideas off a friend, and he replied that
the only drawback was that Apple might perceive it
as a threat to Macintosh sales, and they'd never go
with anything that might hurt the Mac at all.

I think the stockholders want to go with what will
make the most money. What is more profitable, the
sale of one Mac or five IIgs's? I believe the Jigs could
outsell the Mac in the home and education markets
to that degree if properly marketed.

The education market is, by itself, a mighty force in
the computer market. And it is my proposition that
it can and will influence the home market, provided
that the target computer is also portrayed as com
patible with the business world.

The time for a media campaign such as this is now.
Not only is the II market in dire need (unlike ever
before, I think), but the personal computer market
in general is also starting to accept "stratification".

By stratification I mean that consumers are becom
ing reasonably aware of the fact that the latest and
greatest is not necessarily for them. IBM is betting
literally millions on this with the weenie PSI 1. Fur
thermore, one need only look at the automobile
market to see a parallel: very few buy state of the
art cars. What we're after is value for the money.

If Apple plays up the desktop interface on the GS
(some Mac and DOS people I know were not even
aware that the GS had such a thing - or even a
toolbox). and if it provides a 20 meg hard drive, and
especially if it comes out with a 2 meg (in RAM), 8
mhz machine, you could charge $250 more than
the comparable PS/ 1 and still compete with it
(more RAM, better interface, more sophisticated op
erating system, etc.)

But that's a lot of "and ifs".

Finally, Mr. Apple Marketer, there is the matter of
trust and integrity, two very sensitive areas I've
never broached in print b efore. Desperate men do
desperate deeds ...

As a developer, I believed you when you said "Apple
II Forever". I believed you when put the words,
'The Apple II is still a very important part of our

business .. . " into John Sculley's mouth (or words to
that effect).

If Apple goes back on its collective word, you'll have
turned your most loyal customers - you're best
sales people, doggone it - into enemies. You'll have
turned a 70+% market share in education in 1986
to the more Mac-like 10% by 1996.

Do you want to know what IBM thinks? Some of
their marketing reps in the field were reported by
my sources to have said something to this effect:
'Were very happy with the new Macs. We're just
glad Apple didn't start marketing the GS. That
would scare us."

You have already blown a lot of opportunities, I
think. The question in my mind is how much re
pair can you do? I really hope that the "u nan
nounced products" that keep getting tossed around
are meat and not more bread crumbs. But all the
fancy hardware in the world is worth nothing un
less the product is marketed.

Hence I address this plea to you, Mr. Marketing pol
icy maker, whomever you are. Make me eat crow.
Make me swoon with delight over the new level of
interest Apple has in my machine. Do it fast, or rn
have to start fighting you instead of supporting you.

Sincerely,

Ross W. Lambert, President
Ariel Publishing, Inc.

Marketing 102: Marketing for
Small Developers Who Want to
Survive to be Big Developers

Class will be considerably shorter than normal
today due to the fact that our fair professor spent
far too much time blowing off steam. He feels a
whole lot better, however.

Today's class is entitled "Pre-development Plan
ning". Yes, that's right. I said "pre-development".

Most small software companies (and their owners)
tend to develop a product first and then try and fig
ure out how to sell it. "Hey, I got this really hot al
gorithm for calculating pi to more decimal places
than has ever been achieved on a personal com put
er " The code and software may indeed be elegant
and a work of art, but this is pretty much a back
wards way to develop a produ ct.

It is not an impossible situation, mind you, but it is
not the best situation for making money. And let's
be frank - if you are not profitable, you will not sur
vive to write more great code.

For small companies with miniscule budgets (under
$20,000 for marketing), the best market to attack is
a highly specific, easy to find group with some in
tense need. My best advice is to get a catalog of
mailing lists and look at the different groups repre
sented. You may be surprised at the vast variety of
lists you can rent. If you had a program that
tracked family lines for dog breeders, etc., you
could undoubtedly find a list broker who would
rent you a list of such folks. Better yet (and for an
additional fee). the broker would be able to screen
the list for computer using dog breeders.

Hard to believe, perhaps, but ve:ry possible. Here's a
tiny sampling of the lists available from one source
(Research Products Group) :

• Accountants • Aircraft dealers
• Appliance stores • Babies (newbom) (!!!)
• Bicycle dealers • Candy manufacturers
• Carpet installers • Churches (by denomination)
• Rabbis • Saddle:ry & Hamess shops

. . . and there are literally thousands more. If you
don't get an idea for some software you could write
looking through these lists, you probably ought to
give it up right now.

If looking at people by profession or association is
not enough for you , there are also thousands of
publications who rent their mailing lists. For
example, you could do a mailing to the readers of:

• Apartment Management Newsletter
• Bridal Club of America
• DVM Magazine (vetrinarians)
• Environmental and Waste Management World
• Business Week
• nibble
• inCider
• Byte
• Dr. Dobbs Joumal

... and so on.

I've included some key addresses and contacts in
the box at the end of this article. These folks will
send you their catalogs free of charge. Call them.

This brings up a key point: if you have a small
amount of marketing dollars, don't t:ry the shotgun
approach. Make certain eve:ry advertisement you
pay to have printed gets into the hands of someone

who is ve:ry likely to be a potential buyer of your
product.

For folks marketing their own 'wares, this probably
means some kind of direct mail campaign. It also
means that you decide what software to develop
based on your ability to reach a given market. Sur
prisingly enough, the general consumer market is
the hardest to reach and the most expensive.

Ifyou create a product that some small demograph
ic slice of America absolutely has to have, they'll
come looking for you. If you create a product that
eve:rybody has to have, you'll have to pay mass
bucks to go looking for them.

It is one of the great paradoxes of our time, but it is
quite true.

In spite of my admonitions, the question that many
of you are going to have is what to do if you've al
ready got a product and you need to find a market
for it.

The cheapest means to your end is to go ahead and
get all of the mailing list catalogs I've mentioned.
Search through them and constantly ask yourself,
"Do these people have a need for my software?"

For any group that you can answer yes about. high
light their ent:ry in the catalog. Then ask yourself
how many in that group should have a strong
desire to purchase your product. Write down a per
centage. Go with your first guess - don't think
about it too long or your own optimism will start to
influence you.

When you're done, select the top two or three
groups and t:ry test mailings to them. We'll get to
testing and ad creation in a future installment of
this column. Let me say right here and now, howev
er, that if you want to survive to make any money
you have to listen to what the market is saying. If
your test mailings to your best possible target
groups have abysmal retums, cut your losses and
move on to a different product.

This is ve:ry hard to do. I've seen folks throw a
whole lot of good money after bad trying to sell a
product the market didn't want. I'll provide more
details later, but you can tell if your product has a
chance with marketing expenditures of under
$3000. You most definitely do not need a $100,000
loan from a venture capitalist. That's a great way
to ruin your life.

A slightly more expensive route is to have a mailing
list broker do the research for you. Many of them
will listen to your description of your product and

8/Jl(f)

then try to dig up lists that might be appropriate.
Debbie Stanley at InfoMat has done this for us. Her
address is at the end of this article.

Collaborate!

Back at the pre-development ranch, you ought not
let your own inexperience in a field cause you to
toally rule out writing software for it. The best soft
ware for a given market is usually designed by a
member of that market, anyway. You therefore
undoubtedly need a collaborator (unless you're a
very experienced member of the group you're tar
geting) . If you're writing something for high school
principals, your best collaborator is a high school
principal.

It is also very important to do some research. Even
if you think you know a field well, it is often in
structive to talk to several others in the field. The
program you'd like to have in your office may need
a few more features or more flexibility in order to be
the slightest bit useful in my office. Talking to peo
ple (I believe some call this a market survey) can
provide you with tips that will greatly improve your
chances for success.

In short, never develop software in a vacume. Don't
do it alone. I have collaborated with a lawyer, an
accountant. an artist, another programmer, and
another teacher (with varying degrees of success,
but every project that I've finished has been profit
able). I've written some mighty strange software -
from databases that report on molecules to pro
grams that record student answers from a scanner.

My point: you don't need to write AppleWorks to be
a professional programmer. In fact, I'd bet that 99%
of the working programmers today do not ever have
their products advertised in a national magazine.

Some of the most lucrative projects you could un
dertake would involve reaching a small but
desperate market. You wouldn't believe the gar
bage that people are paying big bucks for.

If you do a better job than the other guy - or reach
a market first- the rewards can surprise you. You
may even make more money selling your own
'wares this way than the world famous programmer
who only got a 5% royalty.

I hope this foray into marketing is helping a few of
you. It's not source code, I know, but I've had
enough questions on the subject to lead me to be
lieve that the information is useful and practical.
And that is what we want 8/16 to be. = Ross =

Malllng List Brokers

InfoMat. Inc.
Debbie Stanley
1815 W. 213th St., Suite 210
Torrance, CA 90501
(213) 212-5944

• Debbie has done great work for us in dig
ging up lists that meet our criteria.

Research Projects Corp.
Pomperaug Avenue
Woodbury, CT 06798
(800) 243-4360

• Research Projects has the best general pur
pose consumer list collection I've seen.

MAL DUNN /GSC
Marion L. O'Neill
710 1 Wisconsin Ave. Suite 1001
Bethesda, MD 20814
(800) 873-5478

• Managers of many publications lists.

Worldata
500 N. Broadway
Jericho, NY 11753
(516) 931-2442

• These are the caretakers of Apple's own
customer list. They have many other large
corporate clients.

Semaphore Corporation
207 Granada Drive
Aptos, CA 95003
(408) 688-9200

• Semaphore has a great collection of com
puter lists.

Market Data Retrieval
400 Oyster Point Blvd, Suite 301
So. San Francisco, CA 94080
(415) 871-0936

• MDR is, without question, the only place to
go for education lists.

&'EKES'YS'
Now available and shipping!

Genesys TM ••• the premier resource creation. editing, and source code

generation tool for the Apple II GS.

Genesys is the first Apple IIGS CASE tool of its kind with an open

ended architecture, allowing for support of new resource types as Apple

Computer releases them by simply copying additional Genesys Editors

to a folder. Experienced programmers will appreciate the ability to

create their own style of Genesys Editors, useful for private resource

creation and maintenance. And Genesys generates fully commented

source code for ANY language supporting System 5.0. Using the

Genesys Source Code Generation Langugage (SCGL), the Genesys

user can tailor the source code generated to their individual tastes, and

also have the ability to generate source code for new languages, existing

or not.

Genesys allows creation and editing of resources using a WYSIWYG

environment. Easily create and edit windows, dialogs, menu bars,

menus menu items, strings of all types, all the new system 5.0 controls,

icons, cursors, alerts, and much more without typing, compiling, or

linking one single line of code.

The items created with Genesys can be saved as a resource fork or turned

into source code for just about any language. Genesys even allows you

to edit an existing program that makes use of resources.

Genesys is guaranteed to cut weeks, even months, off program develop

ment and maintenance. Since the interface is attached to the program,

additions and modifications take an instant effect.

Budding programmers will appreciate the ability to generate source

code in a variety of different languages, gaining an insight into

resources and programming in general. Non-programmers can use

Genesys to tailor programs that make use of resources. Renaming

menus and menu items, adding keyboard equivalents to menus and

controls, changing the shape and color of windows and controls, and

more. The possibilities are almost~!

Genesys is an indispensable tool for the programmer and non
programmer alike!

Retail Price: $150.00

SSSi is pleased to announce that we will be carrying the GS Sauce memory card by
Harris Laboratories. This card offers several unique features to Apple //gs owners:

Made in USA
Limited Lifetime Warranty
100% DMA compatable
100% GS/OS 5.0 and ProDOS 8 & 16 compatable
Installs in less than 15 seconds!
Low-power CMOS chips
Uses "snap-in" SIMMs modules - the same ones used on the Macintosh
Recycle your Macintosh SIMMs modules with GS Sauce.
Expandable from 256K to 4 Meg of extra DRAM

This card is 100% compatable with all GS software and GS operating systems. It
is 100% tested before shipping and has a lifetime warranty. The CMOS technol
ogy means that it consumes Jess power and produces less heat thus making it easier
on your //gs power supply. There are no jumpers, just simple to use switches to set
the memory configuration. One step installation takes less than 15 seconds.

Memory configurations:
Awle ll&s model
256K (ROM 1)

add these:
(1) 256K SIMM
(2) 256K SIMMs
(4) 256K SIMMs
(1) 1 Meg SIMM
(2) 1 Meg SIMMs
(4) 1 Meg SIMMs

total GS RAM
512K
768K

1.25 Meg
1.25 Meg
2.25 Meg
4.25 Meg

1 Meg (ROM 3) (1) 256K SIMM 1.25 Meg
(2) 256K SIMMs 1.50 Meg
(4) 256K SIMMs 1.78 Meg
(1) 1 Meg SIMM 2.0 Meg
(2) 1 Meg SIMMs 3.0 Meg
(4) 1 Meg SIMMs 5.0 Meg

Please note that you can not mix 256K and 1 Meg SIMMs packages on the same GS
Sauce card, and that expansion must be performed in (1), (2) or (4) SIMMs modules.

11:kin&:
We are offering a limited time "get acquainted" offer to our customers. The GS
Sauce card is available from SSSi as:

OK $89.95 -use your own 256K or 1 Meg SIMMs modules
1 Meg $179.95
2 Meg $269.85
4 Meg $449.75

gg> We are making a special offer to our Genesys users:

Buy Genesys and and get a coupon to purchase GS Sauce for:
OK $79.95- use your own 256K or 1 Meg SIMMs modules
1 Meg $159.90
2 Meg $239.85
4 Meg $399.75

We hope you will see what an excellant value the GS Sauce card is: low power
consumption, SIMMs technology, inexpensive, made in USA and lifetime war
ranty!
Call or write for seperate 256K and 1 Meg SIMMs modules to upgrade your GS

Order by phone or by mail. Check, money order, MasterCard, Visa and , •• ,.
American Express accepted. Please add $5.00 for SIH

~3E:~~=s~~ (~~~;al~;·8-43 88 ~~,;t~·~

8/ll!S

But did he eat crow?

GenDraw: Jay Does 8 bit

by Jay Jennings

(In spite of his protestations to the contrary - check
out Jay's Hired Guns ad elsewhere this issue -Jay
does indeed do 8 bit programming. This article is
the fu-st in a series on 8 bit animation techniques.
Future topics include pre-shifted shapes {applicable
to just about any animation job, GS, 8 bit or other
wise) and double high resolution techniques. Since
this is the first of many articles, please feel free to
send in questions for Jay. I'll forward them to him
as fast as possible and he'U include the answers in
future installments. Please remember that we have
about a 7 week lead time for articles so you might
not see a response for a little while. - Ross)

I've done several "generic" articles for Ariel
Publishing over the last few years, but all of them
have been Apple IIgs specific programs. Well, all of
them until now. I had swam off doing 8-bit
programming until Softdisk waved some
greenbacks in front of my face . I changed my tune
quickly.

Unlike the Ilgs with its extensive toolbox, you have
to almost start from scratch when writing an 8-bit
program. This led to the creation of GenDraw. a
very simple Hi-Res shape drawing routine that
allows you to place shapes (space ships, little
doggies. or whatever your artistic brain can come
up with) on the high resolution graphics screen of
the Apple II.

Before we get in too deep, make note of the
following. The shapes we're talking about in this
article are bit -mapped shapes, not the kind of
shapes that Applesoft uses. An Applesoft shape is
made up of a set of vectors, or directions. When an
Applesoft shape is drawn, the computer looks at
the shape and says to itself, "Start drawing here,
move up 4 pixels, to the left 10 pixels, down one

pixel. .. " And it continues in that meandering
fashion until the shape is drawn. Yeah, it's okay for
Applesoft, but if you want to get into arcade quality
animation, you'll need to switch to bit-mapped
shapes. Basically, a bit-mapped shape is a
sequence of bytes that can be stored directly to the
Hi-Res screen. We just shove the bytes straight to
the screen, and the shape appears.

I'm not going to get into how to draw a bit-mapped
shape. Instead, I want you to bug Ross to run
another article on how to do that. And by some odd
coincidence, I just happen to have one of those very
close to finished <grin>.

Using GenDraw

To use GenDraw all you have to do is push the
address of the shape to draw on the stack, push
the width and height of the shape, and then load
the X and Y registers with the horizontal and
vertical location where you want the shape drawn.
Then do a JSR GENDRAW and your shape will be
drawn.

The first thing the routine does is to save the values
in the X and Y registers because it then uses those
registers to hold the retum address while the
program pulls more parameters from the stack into
storage locations. This works fine for our purposes.
but all that pushing and pulling takes up quite a
bit of time. If you need extra speed, or have several
shapes on the screen at once, you need a faster
drawing routine. The easiest thing to do is to get rid
of the PHA/PIA parts and just store the needed
values in the memory locations directly before
calling the drawing routine. I used this method for
convenience sake {Ed - I'm glad he did, too, because
it makes it easier to incorporate the routine into high-

8/1l8

er level languages. - Ed).

The sample program that shows off GenDraw runs
under BASIC (so that I didn't have to do any of
those SYS file things) and simply tums on the Hi
Res screen, clears it to black, prints the word
HELLO twice, and then runs a little box from the
left side to the right. Typing BYE after it stops
moving will retum you to your program launcher.
Or type TEXT to pop back into BASIC.

Bash-N-The-Code

Let's look at the first part of the program - that part
that gets the screen ready for graphics use.

The first three instructions in our program tum on
graphics mode, select the full screen (as opposed to
a graphics screen with four lines of text at the
bottom). and chooses Hi-Res graphics rather than
Lo-Res. Then we call a subroutine that goes into a
simple loop plotting a zero byte (the color black) in
all the locations of screen memory. Oh, please say
you know what I mean by screen memory! In case
your brain is a little fuzzy, just remember that the
display on the Apple II is mapped into memory.
That means that if you put a value into the range of
RAM that is screen RAM, it shows up on the
screen. Of course. if you didn't already know that,
this article is probably already over your head. Tell
Ross you want a tutorial on 8-bit graphics. You
know, I could probably whip one of those together.
too. <grin>

As an example, type the following in from BASIC:

HGR
POKE 12288,255

A little white line should appear in the upper left
hand comer of the graphics screen - five lines from
the top. Voila! You just plotted a bit-mapped
shape ... well, kinda. The same principle is used in
our routine.

Once the screen is tumed on and cleared to black,
we initialize a few variables and then use our
handy dandy DrawShape macro to put the letters
to the word HELLO on the screen. The DrawShape
macro was created simply to make our source code
more readable. If you take a look at it, you'll see
that it just pushes the correct parameters and does
a JSR GENDRAW.

After we print the words to the screen, we
immediately go into our drawing loop. This loop
draws the current shape, updates some variables,
and then keeps looping. This continues until the

shape we're drawing has gone the entire length of
the screen. Then we bop out of the loop, and retum
to BASIC.

If you haven't done any Hi-Res animation before,
you may be wondering why I have seven shape
tables but only one shape is visible on screen. In
reality, you're seeing all seven shapes. They're just
all exact duplicates except that they're shifted over
one pixel from the previous shape. Yikes! We're
getting into pre-shifted shapes! Hmmm .. .I can see
this article growing beyond the bounds of this
magazine. Why do we need shifted shapes?
Because when we draw it is far and away fastest to
draw on byte boundaries (there's less calucation).
And if we want smooth animation, we don't want to
jump a byte at a time. So we make seven shapes,
each shifted over one pixel from the previous. and
then plot those shapes at the same screen byte
location. If we plot all seven shapes one right after
the other. it appears that the shape is moving to
the right one pixel at a time. When we hit the last
shape, we scoot to the next byte, and start plotting
our seven shapes all over again.

Jay's Teddy Bear

Pre-shifted shapes can be confusing when you're
just getting started in animation. Heck, everything
about animation can be confusing! By using the
GenDraw demo program as a convenient starting
place you can play around with different sized
shapes, change coordinates, etc. If you want to
make a teddy bear travel across the screen instead
of the little box, the first thing you need is a teddy
bear shape. I've included one with this demo. Yes,
the teddy bear looks more like a martian that's
been stomped on, but trust me, it's a teddy bear.

You'll need to change the source code for this to
work (do your experimenting on a copy of the
program so you don't have to type it all in again in
case of an accident). Cut out the seven shape table
lines (Shape! through Shape?) and type in the
teddy bear shapes. Then change the two variables
at the front of the source code to reflect the new
size of the shape. Assemble it, run it, and watch
that teddy bear move.

8/JU6

Math Anxiety

Let's take a look at an important part of the
program. Right in the midst of the GenDraw
subroutine we need to calculate where we're going
to be drawing the shape. Since the graphics
memory isn't contiguous1, we have to do some
fiddling to find out where in display memory we
start drawing. First thing we do is to use the
current vertical coordinate as an index into the two
tables at the bottom of the source code listing.

Those two tables contain the starting addresses for
all the lines on the Hi-Res screen. For example, if
we want our shape to start on the fifth line, we can
see that the fifth value in both tables gives us the
starting address of that line, $3000 (or 12288 in
decimal). Remember those two lines of BASIC code
you tried a little bit ago? Proof that the lookup
tables work! <grin> Thankfully the video memory is
contiguous across each screen line, so all we have
to do now is to add the horizontal coordinate to our
line address, and we have the starting address for
our shape.

This generic drawing routine works quite well as
the core of a Hi-Res character generator. That's a
program that allows you to print text on the
graphics screen, much like we printed the words
HELLO. In fact, I created some routines and
macros that allow you to write assembly language
code like the following:

Locate tlO;#lO ;position the cursor
Print "This is text on the graphics screen!"

Those two lines of code will position the "cursor" on
the Hi-Res graphics screen where an HTAB 10 :
vrAB 10 would have placed them on the 40
column text screen, and then the second line draws
the given line of text to the graphics screen.
Routines like that make creating programs much
easier. I'm a big believer in "working lazy." I only
had to develop the routines once and now I can use
them in all future 8-bit programs. Some of these
routines will appear in future issues (if there's any
demand for them).

Also, with the addition of a few lines of code we can
make our shape drawing routine work with double
Hi-Res shapes. Because of the idiosyncrasies of
double Hi-Res, you can't have a very efficient
generic drawing routine, which is why I didn't

1. Woz interleaved the screen RAM in a near-spaghetti fash
ion for a purpose - it cut down on the electronic require
ments of the video circuitry. In short, it made the original
Apple's faster and cheaper. 'Tis just another example of
his genius at work, really. - Ross

implement it right now. But we'll look at one way to
do it in an upcoming article. Also, we could look
into creating a nifty shape drawing utility. The one I
use was written by some novice programmer
<ahem> about four years ago. It was written in
Applesoft so it's slow. And the programmer <ahem>
didn't know what he was doing at the time so it's
kinda lame. It's called ShapeMaster and it should
be on the 8/16 disk this month. You can also get it
from the A2PRO Library on GEnie.

What I need from you is some feedback. Ross said
we could start an 8-bit graphics column. But if
nobody cares about it it'd be wasted space. So let
me know (via Ariel) what kind of graphics stuff
you'd like to see. Tutorials starting at the very
beginning? More advanced techniques? A mix of
the two? -Jay

Listing 1 - GenDraw Macros

(note: all listings were created with Merlin 8/ 16)

DrawShape mac
PushWord]1
PushByte]2
PushByte]3
ldx] 4
ldy] 5

; shape address
;height of the shape
;byte width of shape
;X coordinate
;Y coordinate

jsr GenDraw
eom

;go draw the shape

PushWord MAC
IF #=]1
lda >]1
ph a
lda] 1

ph a
ELSE
LDA] 1+1

PHA
LDA] 1
PHA
FIN
<<<

PullWord mac
pla
sta]1
pla

;lo byte

;get the lo byte

sta]1+1 ;get the hi byte
eom

PullByte mac
pla
sta]1

8/116

eom

PushByte mac
lda] 1
ph a
earn

Listing 2 - GenDraw Demo

lst off
*==
* a little demo to show our Generic
* Drawing routine
* Another Mohawk Man Creation
* Copyright 1990 - PunkWare
*==

xc ;allow 65C02 opcodes
mx %11 ;only 8-bit, thank you.
cas in ;this isn't C (thank God)
typ bin ;run under BASIC.SYSTEM
use gendraw.macs
org $4000 ;start above graphics

*---
Graphics
MixOff
HiRes
Wait

*
ShapeAddr
ScreenAddr

*
ShapeHeight
ShapeWidth

$cOSO
$c0 52
$c0 57
$fca8

;graphics mode on
;no text at bottom

;nifty ROM routine

10 ;direct page space, dude
12 ;more direct page space

6 ;ht (in lines) of shape
3 ;width (in bytes) of

;shape
*---

ProgramStart
lda
lda

Graphics
MixOff

;turn on graphics
;no split screen

*

lda
jsr

HiRes ;we do want HiRes
ClearScreen ;make all black

* now draw the word 'HELLO' on the
* screen ... twice

*
DrawShape #HShape;#16;#1;#10;#10
DrawShape #EShape;#16;#1;#12;#10
DrawShape #EShape;#16;#1;#12;#30
DrawShape #LShape;#16;#1;#14;#10
DrawShape #LShape;#16;#1;#14;#50
DrawShape #LShape;#16;#1;#16;#10

*

DrawShape #LShape;#16;#1;#16;#70
DrawShape #0Shape;#16;#1;#18;#10
DrawShape #OShape;#l6;#1;#18;#90

* and now make the little box shape travel
* across the screen

*

]loop

*

lda #120
sta
lda
sta
stz

ldy
lda
ph a

:Y ;init vertical coordinate
#0
:X ;and the horiz coordinate
:ShapeOffset ;which of 7

;shapes to start with

:ShapeOffset
ShapeTable+l,y ;get high byte

lda ShapeTable,y ;get low byte
ph a
PushByte #ShapeHeight;shape ht
PushByte #ShapeWidth ;width in bytes
ldx :X ;X coordinate
ldy :Y ;Y coordinate
jsr GenDraw ;go draw the shape

* now point the offset to the next shape.
* if all 7 shapes have been drawn, start
* over with shape number zero.

*
lda
clc
adc
cmp
blt
inc
lda

:NotAll
sta
lda
jsr
lda

:ShapeOffset

#2 ;move to the next shape
#14 ;have we done them all?
:NotAll
:X ;move to next screenbyte
#0 ;start with 1st shape

:ShapeOffset
#100
Wait
:X

;pause to slow action
;see how far we've gone

* are we at the end of the screen?

cmp
bne

#39-ShapeWidth
]loop ;if not, keep traveling

* quit back to BASIC w/graphics screen
* still showing.

rts
:X ds 1
:Y ds 1

:ShapeOffset ds 1

*==
* plot black stuff on the hires screen to
* clear it. Yeah, there's a ROM call for
* this, but we can use this later.

Clear Screen
lda #0
sta
lda
sta

ScreenAddr
#$20
ScreenAddr+1 ;start at $2000

]CLoop1
ldy
lda

]CLoop2

#0
#0 ;plot a zero -it's black!

sta (ScreenAddr),y ;plot a black dot
iny
bne]CLoop2
inc ScreenAddr+1
lda
cmp
blt
rts

ScreenAddr+1
#64
]CLoop1

*==
* the Generic Drawing routine

* enter:

*
*
*
*
*
*

Push Word
PushByte
PushByte
ldx
ldy

ShapeAddress
ShapeHeight
ShapeWidth
XCoord ;byte pos 0-39
YCoord ;line pos 0-189

jsr GenDraw

GenDraw

]loop

sty
stx
plx

:YCoord
:XCoord

;save vert coord
;save horiz coord

ply ;hold return address
PullByte :ShapeWidth
PullByte :ShapeHeight

for a sec

PullWord ShapeAddr;where shape lives
phy
phx ;restore return address

ldy :YCoord ;vertical position

* look up lo byte of line

lda
clc
adc

LoTable,y

:XCoord ;add offset into line

sta
lda
adc
sta

ldy

ScreenAddr
HiTable,y
#0 ;add carry if necessary
ScreenAddr+1;save it, too.

#0

;how many bytes to draw on this row
ldx :ShapeWidth

]DrawLoop
lda
sta

(ShapeAddr) ;byte of shape tbl
(ScreenAddr),y;stick on screen

;point to next byte of shape table
inc ShapeAddr

bne
inc

:SkipHi
iny
dex
bne

:SkipHi;<>O, don't inc hi byte
ShapeAddr+1;else inc hi byte

;next position on screen
;one byte down ...

]DrawLoop ;if not done, cont

;if done with all bytes, next line
inc :YCoord

;another line bytes the dust
dec :ShapeHeight

;if more lines to draw, go do it
bne]loop
rts ;udderwise. skedaddle

:ShapeHeight ds
:ShapeWidth ds

1
1
1
1

:XCoord
:YCoord

ds
ds

*==
* address for the preshifted shapes, and
then the shapes themselves.

ShapeTable
da
da
da
da
da
da
da

Shape! hex
Shape2 hex
Shape3 hex

Shape1
Shape2
Shape3
Shape4
ShapeS
Shape6
Shape7

0000007E3F002220002220007E3FOOOOOOOO
0000007C7F004440004440007C7FOOOOOOOO
000000787F01080101080101787F01000000

Shape4 hex 000000707F03100202100202707F03000000
ShapeS hex 000000607F07200404200404607F07000000
Shape6 hex 000000407FOF400808400808407FOFOOOOOO
Shape? hex 000000007FlF001110001110007FlFOOOOOO

HShape hex 636363636363637F7F63636363636363
EShape hex 7F7F03030303031FlF03030303037F7F
LShape hex 03030303030303030303030303037F7F
OShape hex 3E7F6363636363636363636363637F3E

*==
* lookup tables so we can find the address of each
screen line.

HiTable hex 2024282C3034383C2024282C3034383C
hex 21252920313539302125292031353930
hex 22262A2E32363A3E22262A2E32363A3E
hex 23272B2F33373B3F23272B2F33373B3F
hex 2024282C3034383C2024282C3034383C
hex 21252920313539302125292D3135393D
hex 22262A2E32363A3E22262A2E32363A3E
hex 23272B2F33373B3F23272B2F33373B3F
hex 2024282C3034383C2024282C3034383C
hex 21252920313539302125292031353930
hex 22262A2E32363A3E22262A2E32363A3E
hex 23272B2F33373B3F23272B2F33373B3F

LoTable hex 00000000000000008080808080808080
hex 00000000000000008080808080808080
hex 00000000000000008080808080808080
hex 00000000000000008080808080808080
hex 2828282828282828A8A8A8A8A8A8A8A8
hex 2828282828282828A8A8A8A8A8A8A8A8
hex 2828282828282828A8A8A8A8A8A8A8A8
hex 2828282828282828A8A8A8A8A8A8A8A8
hex 5050505050505050DODODODODODODOOO
hex 5050505050505050DODOOODOOODODODO
hex 5050505050505050DOOOOODOOODODOOO
hex 5050505050505050DOOOOODOOODODOOO

*==

sav gendraw

ApplesofC Never
Looked So Good!
The Call Box TPSTM (Toolbox Programming System)
gives you the tools to look and sound your best. Make your
own Applesoft BASIC desktop applications which look and
sound like professional programs.

Over 1000 toolbox calls have been added to Applesoft BASIC
which gives you, the BASIC programmer instant access to the
Apple llgs toolbox in a simple and flexible way. You can use
the Memory Manager, Miscellaneous Tools, Tool Locator,
Quickdraw II, Desk Manager, Event Manager, Scheduler,
Sound Manager, Desktop Bus, Text Tools, Window
Manager, Menu Manager, Control Manager, Quickdraw II
(aux.), Line Edit, Dialog Manager, Scrap Manager, Note
Synthesizer, Note Sequencer, A.C.E., Standard File and
much more. In addition to all the tool calls you have access to
ProDOS 16 and GS/OS commands at the same time that you
have access to Pro DOS 8 commands. You can even load and
run relocatable shell applications from within the Call Box
BASIC environment.

The Call Box TPS includes the BASIC interface, WYSIWYG
Window, Dialog, Menu and Image editors, Disk and system
utilities plus demos and tutorials. The Call Box TPS comes on
3 - 3.5"disks with a 140+ page hard cover ring binder
manual. Requires 1 megabyte min. and GS/OS V5.0.2 min.
Call Box is supported by a programmers association which
provides its members with disks and documentation designed
to educate as well as illuminate.

The Call Box TPS $99.00

@ So What Software·

10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

(714) 964-4298 VISA/Mastercard accepted

Pascal Pies Part II

by Phil Doto

In a previous 8/16 article [April 90]. I discussed
the care and feeding of Super High Resolution
pictures that have been stored in Apple's favorite
format ($C0/$0002) . Apple Preferred Format files
a:e very flexible and can be used to store any SHR
p1cture: unfortunately, not all JIGS pictures are in
this format. If you want your program to display
pictures that someone else created, you'll have to
work with what you get. Also. even though I
happen to like APF files. I have to admit that in
some cases (for example, a screen sized image)
there are advantages to using another format. So,
in the spirit of fair play and completeness. It's time
to talk about the other common SHR file types.

Super Hi-Res pictures come in two main file types.
Type $CO (commonly called PNr files) are
compressed picture files and type $C 1 (PIC files)
are uncompressed pictures. The auxiliary file type
is used to specify the exact type of file within each
category. For example, a compressed file ($CO)
with an auxtype of $0002 is an Apple Preferred
Format file.

For pictures that do more than just sit there and
look pretty, there's a third file type. Type $C2 (ANI
files) are animation images.

Paintworks Pictures

The first auxiliary type ($0000) for compressed
($CO) files was assigned to files created by one of
the first products to work with SHR files,
Activision's Paintworks program.

Before we start digging around inside a Paintworks
file. let's quickly review the data we need to display
an SHR picture. In my first article, I discussed the

following data structure:

type PicRecord =
record

ImageHandle handle;
MasterMode : integer;
PixelsPerScanLine integer;
NurnScanLines : integer;
LineSCB: array[O .. MaxLine] of integer;
NumPalettes : integer;
Palette: array[0 .. 15] of ColorTable;

end;

This record contains all the data needed to properly
display an SHR picture. If I load the file. unpack
the picture, and fill out this record, I can use the
same routines that I used with the APF files to
display the picture on the screen. This is an easy
way to support several different file types in the
same program. Once the data is in this record, it
doesn't matter what the original file type was.

All we need to know now is how the data is stored
in the Paintworks file and we can get started.
According to Apple's file type note on $C0/$0000,
Paintworks files contain the following :

Byte

+000 to +01F
+020 to +021
+022 to +221
+222 to EOF

Contents

Super Hi- Res Palette
Background Color
16 QuickDraw II patterns
Packed graphics data

The background color and pattems are needed by
the paint program, but they aren't needed to
display the picture, so let's Ignore them. That
leaves a palette and a packed image -- not enough
data to fill out the PicRecord. Of course, the
answer is that the other fields in the record are the

same for all Paintworks files. These files are 320
mode pictures, so the MasterMode and all the &an
Line Control Bytes will be $00. They are screen
wide images, so there are 320 pixels per scan line.
Finally, the pictures are "page" length with 396
scan lines.

Although $C0/$0000 files are always 320 mode
pictures, 640 mode Paintworks files do exist. The
640 mode pictures use an auxiliary file type of
$8000. The file contents are the same as the
$0000 files. but the $8000 auxtype tells us to use
640 mode for the display. When I first started
experimenting with these files, I was a little
surprised to leam that, although the MasterMode
was $80, the scan line control bytes still needed to
be $00.

Listing 1 is a routine to load, interpret, and unpack
both types of Paintworks files. This is a parallel
routine to the Load.APF routine in the prior article.
When I load a $CO file, I can check the auxtype and
call Load.APF for auxtype $0002 or call this routine
for auxtypes $0000 or $8000.

{*---------------LISTING 1-----------------*}

function LoadPW(thePathName : GSString255;
VAR thePic:PicRecord;
theAuxType:longint): boolean;

This function loads a PaintWorks
file specified by the GSOS string.
If successful, true is returned and
all fields of the PicRecord are set.

var myBufferHndl : Handle;
i,
bytesDone,
srcSize,
dstSize : integer;
srcBuffer,
dstBuffer : Ptr;
address,

size : longint;
begin

LoadPW : = false;

{ load the file and get the address

if LoadFile(thePathName,
myBufferHndl,
size) then begin

address := longint(myBufferHndl~);

with thePic do begin

{ 396 scan lines with SCB = $00 }

NumScanLines := 396;
for i := 0 to 395 do LineSCB[i] := $00;

{ one palette at start of file }

NumPalettes := 1;
Palette[O] := ColorTablePtr(address)~;

{ get mode from auxtype }

if theAuxType = $0000 then begin
MasterMode := $00;
PixelsPerScanLine := 320;
end

else begin {must be $8000}
MasterMode := $80;
PixelsPerScanLine := 640;
end;

allocate space for $F780 bytes
160 X 396 = 63360 = $F780

ImageHandle := NewHandle($F780,
myMemoryiD,
attrLocked,
nil);

theError := _ToolErr;
if theError <> noError then begin

ReportError(theError);
DisposeHandle(myBufferHndl);
exit (LoadPW);
end;.

compressed image is at offset +$222

srcBuffer := Ptr(address + $222);
srcSize := size - $222;

dstBuffer := ImageHandle~;
dstSize := $F780;

bytesDone := UnPackBytes(srcBuffer,
srcSize,

dstBuffer,
dstSize);

DisposeHandle(myBufferHndl);

end; {with}

LoadPW := true;
end;

end;

{*---*}

8/lltB

This routine first loads the file image into memory
using the same procedure that I used for APF files.
Next, appropriate values are assigned to the fields
of the PicRecord. The palette is extracted from the
file and the other fields are assigned the
appropriate fixed values depending on the auxtype.

Unpacking the image is simpler than it was with
APF files since I don't have to deal with all kinds of
odd picture sizes. The unpacked image size will
always be 160 bytes per scan line times 396 scan
lines which is 63360 ($F780) bytes. All I need to do
is allocate the memory, set up a few parameters
and feed them to UnPackBytes.

Once the picture is unpacked, I can dispose of the
memory that was used for the file image and retum
true to the calling procedure to indicate that the
PicRecord contains a pixel image and other data
ready for the display routines.

Screen Images

Conceptually, the simplest type of SHR file is an
image of the 32K screen display in computer
memory. Screen images come in two flavors,
compressed ($C0/$0001) and uncompressed
($C1/$0000). A $C0/$0001 file is simply a
$C1/$0000 file that has been compressed by
processing the entire file with PackBytes. Likewise,
if we run a $C0/$0001 file through UnPackBytes,
we end up with a $C1/$0000 file.

Although conceptually very simple, screen images
often cause confusion. The source of most
misunderstandings about these files is the

Figure 1- Screen Image File Contents

Memory Locations File Bytes Contents

$El/2000 - $El/9CFF $0000 - $7CFF pixel image
$El/9DOO - $El/9DC7 $7000 - $7DC7 200 SCBs
$El/9DC8 - $El/9DFF $7DC8 - $7DFF resrvd (zeros)
$El/9EOO - $El/9FFF $7EOO - $7FFF 16 palettes

mistaken idea that they simply consist of the pixel
image. In fact, a 32K screen image includes the
pixel image, the palettes, and the scan line control
bytes.

A simple way to display this type of file is to load it
directly back to $E 1 /2000 (after processing it with
UnpackBytes if it's a compressed file.) That way
the scan line control bytes and the palettes will
automatically fall into place and the picture will be
displayed properly.

However, sometimes one wants to store the image
off screen, so the image (or parts of it) can be
copied to the screen (or a window) at a later time.
Off screen processing is also handy in the case of a
program that is supporting several different file
types. Cases like these call for an approach similar
to that used for the other file types.

Listing 2 is a routine to load, interpret, and unpack
both compressed and uncompressed screen image
files. Once again, this is a parallel routine to the
other routines I've discussed.

{*---------------LISTING 2-----------------*}

function Loadimage(thePathName : GSString255;
VAR thePic:PicRecord;
theType:integer): boolean;

This function loads a screen image
specified by the GSOS string.
If successful, true is returned and
all fields of the PicRecord are set.

var myBufferHndl : Handle;
i,
bytesDone,
srcSize,
dstSize : integer;
srcBuffer,

dstBuffer : Ptr;
address,
size : longint;

begin
Loadimage := false;

{ load the file }

if LoadFile(thePathName,
myBufferHndl,
size) then begin

and fill in the pic record

with thePic do begin

if theType = $CO then begin

{ packed file - first allocate 32K

ImageHandle := NewHandle($8000,
myMemoryiD,

theError := _ToolErr;

attrLocked,
nil);

if theError <> noError then begin
ReportError(theError);
OisposeHandle(myBufferHndl);
exit (Loadimage);
end;

then unpack the whole file

srcBuffer := myBufferHndlA;
srcSize := size;

dstBuffer := ImageHandleA;
dstSize := $8000;

bytesOone := UnPackBytes(srcBuffer,
srcSize,
dstBuffer,
dstSize);

OisposeHandle(myBufferHndl);
end

else (unpacked file }
ImageHandle := myBufferHndl;

{ get the address for pointer math

address := longint(ImageHandleA);

(200 SCBs starting at offset +$7000 }

NumScanLines := 200;

for i := 0 to 199 do
LineSCB[i] ·= intPtr(address

+ $7000 + i)A;

{ 16 palettes starting at offset +$7EOO }

NumPalettes := 16;

for i := 0 to 15 do Palette[i] ·=
ColorTablePtr(address

+ $7E00 + (32 * i))A;

(get mode from first scan line

if BAnd(LineSCB[0) ,$80) = 0

then begin (320 mode }
MasterMode := $00;
PixelsPerScanLine := 320;

end

else begin { 640 mode }
MasterMode := $80;
PixelsPerScanLine ·= 640;

end;

end; (with}
Load!mage : = true;
end;

end;

(*---*}

The Loadimage routine first loads the file into
memory using the same LoadFile function. Next, if
it's a compressed file (type $CO), 32 kilobytes are
allocated and the file is unpacked. Since an
unpacked $C0/$0001 file is exactly the same as a
$Cl/$0000 file, the rest of the processing is the
same.

Since the pixel image is the first thing in the file, I
can use the handle to the file image as my
ImageHandle. The pixel image is only $7DOO bytes
of the $8000 handle, so I could resize the handle
after extracting the other data, but it isn't
necessary. Also, leaving the extra information
behind the image has an advantage that I'll explain
shortly.

It's a fairly simple matter to fill in the fields of the
PicRecord. The SCBs and palettes come from the
file and most of the other information is fixed since
this is a screen sized picture. Since the
MasterMode isn't explicitly stated, I've taken it to be
the same as the mode of the first scan line control
byte.

Animation Files

Paintworks animation files (type $C2) provide a way
to store pictures that move. Although listed as an
official file type assignment, there is no file type
note on $C2. In fact. as far as I know, the file
structure has never been published anywhere. The
following file structure is inferred by inspection
(with the help of 8/ 16's bright, young IIGS editor,
one Eric Mueller):

Paintworks Animation File Format:

Byte

+0000 to + 7FFF
+8000 to +8003
+8004to+8007
+8008 to EOF

Contents

Screen image of first frame
Length of animation data block
Delay time
animation data block

The first thing in the file is an ordinary
uncompressed screen image of the first frame to be
displayed. This is exactly like a $Cl/$0000 file.
As a result, I can get double duty out of the above
Loadimage routine and use it to load these files as
well. Since I left the whole file image in the
ImageHandle, the animation data will be in the
PicRecord behind the pixel image.

After the screen image, we find two 4-byte values.
The first is the length of the animation data block
and the second is a delay value that tells how long
to pause between frames. Although four bytes are
allocated for this delay value, the numbers are
small and only one is apt to contain non zero data.
A delay of one tick (1/60 second) times this value
seems to work out about right. In other words, a
delay time of 6 will result in a tenth of a second
delay between frames.

Finally, the animation data block tells how to
modify each frame to create the next one. This
block starts out with a 4-byte value. Since on the
files that I've examined the value is always 4, I
think that this was an offset to the actual data. It
was probably included to allow for future
expansion. The actual data consists of a series of
four byte records. Each of these records is made
up of two 2-byte values. The first is an offset into
the display screen. Adding $El2000 to this offset
will give an address in screen memory. The next
two bytes contain pixel data to poke onto the
screen at this address. Each frame consists of the
pixels needed to modify the prior frame. An offset
of zero indicates the end of a frame.

In order to display the animation, I load the file
with Loadimage and display the first frame just like
it was a $Cl/$0000 file. Then I call this routine to
animate the image.

{*---------------LISTING 3-----------------*}

procedure DoAnimation;

This function animates a $C2 file
in the global PicRecord myPic.

type longintPtr = Alongint;

var theEvent : EventRecord;
StopAni : boolean;
code, delay,
offset,pixelData : integer;
DataPtr,AniBlockLength,EndTick,
StartAddress,EndAddress,
WriteAddress : longint;

begin
StopAni ·- false; { initialize a flag

{ read the length of the ANI block }

DataPtr := longint(myPic.ImageHandleA)
+ $8000;

AniBlockLength := longintPtr(DataPtr)A;

{ and the delay value }

DataPtr := DataPtr + 4;
delay := intPtr(DataPtr)A;

{ ANI data starts 4 bytes into ANI block }

DataPtr := DataPtr + 8;
StartAddress := DataPtr;
EndAddress := StartAddress

+ AniBlockLength - 4;

keep looping through the animation until }
the user hits a key or the mouse button }

Repeat

{ read the offset number }

offset := intPtr(DataPtr)A;

if offset = 0 then begin

{ delay

EndTick := GetTick + delay;
repeat until GetTick > EndTick;

{ and then start a new frame

DataPtr := DataPtr + 4;
if DataPtr >= EndAddress

then DataPtr := StartAddress;
end

else begin

we got a non zero offset so
write the pixel data to the screen

DataPtr := DataPtr + 2;
pixelData := intPtr(DataPtr)A;
DataPtr := DataPtr + 2;
WriteAddress := $E12000 + offset;
intPtr(WriteAddress)A := pixelData;

end;

if GetNextEvent($002E,theEvent) then begin

8/RS

{ $002E = key or mouse button event

if (theEvent.what = keyDownEvt) or
(theEvent.what = autoKeyEvt)
then begin

code := LoWord(theEvent.Message);
case code of

increase delay on down arrow

10 : delay := delay + 1;

decrease delay on up arrow

11 : if delay > 0
then delay := delay - 1;

stop animation on any other key

otherwise StopAni := true;
end; {case}

end {if key event)

{ stop animation on mouse button }

else StopAni := true;
end;

until StopAni;

ClosePic(PicLoc);
end;

{*---*}

The routine determines the starting and ending
addresses for the animation data and reads the
delay time before entering the animation loop. The
animation loop is really quite simple. Read an
offset and, if it is not zero, calculate the screen
address, read the pixel data and poke it onto the
screen. If the offset is zero, pause for delay ticks
and then update the data pointer and start the next
frame .

Each time through the animation loop, I check to
see if a key or mouse button event has occurred. If
a down arrow was pressed, increment the delay to
slow the animation down. If an up arrow was hit,
decrement the delay and the animation speeds up.
If the user presses any other key or the mouse
button, I stop the animation and return to the
desktop display.

Putting it all together

Combine these routines with the routines from the
previous article and you'll be able to display any
common SHR graphic file. Since, in all cases, the
file image is saved offscreen: all sorts of special
effects are possible. You could stretch the image
with CopyPixels or make a puzzle by copying parts
of the image. The possibilities are endless, but one
thing is certain. Whether he or she is going to write
the next great paint program or just wants to add a
title screen, sooner or later every IIGS programmer
will use SHR picture files.

Program
the IIGS!

Programming the Apple IIGS in Assembly
Language by Ron Lichty and David Eyes. The eas iest
to-follow step-by-step guide to creating full-fledged Apple
IIGS applications. Develop Hello, World from an 8-line
program that prints on the text screen to a full-blown desktop
program with menu bar, dialogs, icons, and multiple,
sizeable, scrollable windows! Thorough reference section.
550 pages. "Addictive ... the more I read, the more fascinated
I became .. . In my opinion, this book will fill a big gap in the
world of the Apple IIGS." (Call-APPLE technical editor Cecil
Fretwell) "A must for would-be Apple IIGS programmers ... a
jump start for beginners and experienced programmers alike ."
(Nihhle editor David Krathwohl) "This book belongs in
every Apple IIGS programmer's library." (Diversi-software
author/publisher Bill Basham) $32 postpaid

Hello, World disks (code from the book, on disk):
APW/ORCAM $20; Merlin $10; C (APW/ORCA) $20

ORCA/M Assembler (Byte Works)
ORCA C Compiler (Byte Works)

$46 postpaid
$84 postpaid

Calif: add 7% tax. No VISNMC. Send SASE for details.
Foreign, add: Canada $2; Europe $14 (air) ; Asia $20 (air)

Ron Lichty (8), POB 27262, San Francisco, CA 94127

8/]].(8

~ri· :.;. :.1

The Great 8/16 Early Renewal Special !!!
0 First, the deal you've all been asking for (okay, so we were a little slow on the up
take ...). If you renew and order both the magazine and the disk, you get to take $10
right off the top of your total.

0 Second, if your renewal is postmarked before midnight December 31st, 1990, you get
to renew at the old $29.95 price (for the magazine). This is $2.05 off the normal sub
scription price we will have effective January 1st, 1991 (in fact, our official price is al
ready $32, but we've had some intra offers on direct mail ads through the end of this
year). Okay, I admit that $2.05 isn't a world class savings, but if you combine it with the
$10 off the disk/magazine combo, you'll get nearly 15% of the normal price.

0 Third, if you renew before the end of the year, you may choose to order SSSi's Desk
Pak™ GS desk accessory package for a mere $15 (about 60% offl). This super package
contains 181 different DA's for your GS, including an appointments reminder, file tools
(no more having to quit back to the finder to delete a file!), a calculator, mini-database,
screen saver, and two different scrap books. For those of you who aren't familiar with a
scrapbook DA, they are the biggest productivity tool for the desktop environment. They
let you store text or graphics in such a manner that that they're always available from
the DA. Select what you want and you can paste it into any document - anytime, any
where. Best of all, you'll receive a huge price break when SSSi updates the package! Oh,
I almost forgot: if you order DeskPak from us, we'll make your current subscriptions
- both disk and magazine if applicable - go an extra month. This is kinda like getting
a rebate at the time of purchase. This offer applies to both renewals and DeskPak-only
orders.

We have included a special order form on the back cover of this month's issue.

• 8/16 on Disk •
We don't have the room to even come close to telling you what goes into the disk every single month. We
estimate that by the end of our first year we'll have delivered approximately 8 megabytes of source code,
utilities, articles, and other goodies for Apple II programmers. That works out to less than $9 per mega
byte. I think it is the deal of the century, but since I'm naturally quite biased, I thought I'd tell show you
the kind of feedback we're getting about it ...

"I havefOlmd it to be afantastic investment: I've never had soooo much information in one place before .. . " -
Michael W. Faulkner, Berlin, Germany

"You guys are simply outdoing yourselves ... "- Robert Todoroff, St. Louis, MO

1. Please note that one of the DA's ("Add DA") has become incompatible with current system software. This will be rectified in the
new updated version of the package, due out in early '91. All of the other DAs perform as advertised on my GS (a ROM 01
machine running System 5.02). - Ross

"I can't live without it!" - Robert Santos, Miami, FL

The magazine you are now holding in your hands is but a small subset of the material on the 8/16 disk.
We have combed the BBS's and data services across the country to collect the best of the public domain
and shareware offerings for programmers. Not only that, but we have extra articles and source code
written by our staff.

A few highlights (so far every disk has had more than 600K of material!):

• Sept '90:

• Aug '90:

8 bit - Jerry Kindall's Generic Startup routines and the complete source code to
Karl Bunker's DOGPAW
16 bit- Jason Coleman's shareware resource editor, LLRE; Morgan Davis's universal
shell routines.

8 bit- Jerry Kindall's Generic Shutdown routines for assembly (this is GREAT); a
complete, working Forth language compiler (Uniforth); Ross's FN Local and FN
SetEOF for ZBasic programmers (A classic ... hehehe - guess who's writing this!)

16 bit- Doni Grande's extended keyboard code; Jay Jennings' extended control
routines; and- believe it or not- Nifty List v. 3.0, by Dave Lyons.

' • June '90: 8 bit - 3D graphics package, MicroDot™ Demo, DiskWorks, 80 column screen
editor.

16 bit- Assembly Source Code Converter (shareware), Install DA (on the fly;
by our our own Eric Mueller). Find File source code.

1 year - $69.95 6 months - $39.95 3 months - $21

Individual disks are $8.00 each. Non-North American orders add $15 for 1 year, 8$ for 6 months, and $5
for three months. All disks are shipped first class.

• Shem The Penman's Guide To Interactive Fiction •

This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of all it
is a very well organized, well written, and well programmed introduction to programming interactive
fiction. It is, in fact. the only package of its kind I've ever seen!

Author Chet Day is a professional writer (go buy The Hacker at your nearest book store!) and an educator
who is as conerned with the content of your interactive fiction program as with the form. This package is
fun, entertaining, and useful. It includes Applesoft, ZBasic, and Micol Advanced Basic "shells" which will
drive your creations - $39.95 (both 5.25" or 3.5" disks supplied). P.S. The advantage to the ZBasic and
Micol versions is that with the easy integration of text and graphics provided in those langauges, you can
easily load a graphic and overlay text in the appropriate spots.

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software and
publications). If you are ever dissatisfied with one of our products. we will cheerfully refund the amount
you paid on your request. To order, just write to: Ariel Publishing, Box 398, Pateros, WA 98846 or call
(509) 923-2249. Our fax number is (509) 689-3136.

We accept Visa. MC. personal checks, lOU's, institutional purchase orders (for those of you in institu
tions), RAM chips, TransWarp GS's, Apaloosa's, hats from around the world, programming work, etc. Be
creative if you're broke.

8/ JH6

Giving Your Apple a Real Switch
by David Gauger
Oral Roberts University

(Frankly, I've been amazed at the interest in David's
columns. Not only have folks written in to say how
much they've enjoyed using the projects after build
ing them, but Don Lancaster even gave us a plug in
his Radio-Electronics magazine column. Many of our
new subscribers are therefore dedicated project
builders. if that was not enough, one of David's fu
ture productions for us is already being incorporated
into a commercial product.

This month's foray is a littler simpler than past
projects- partly at my request. Things couldn't have
worked out better though - David gave us a switch
project in the very month Roger Wagner released Hy
perStudio XCMDs that respond to switch-type input
devices(cJ. my Publisher's Pen column). Perhaps one
of y'aU will design some hardware and software for
your local special education department. etc. if you
do. I'd like to hear about it. --Ross)

With a little imagination and just a bit of switch
hardware, your Apple can sense and react to the
world around it in some amazing ways. Because
the gameport makes connecting switches and
sensors a trivial task, the basic Apple) [is equipped
far better than many other computers to interact
with the outside world. Even so, few features of the
Apple][line have as much unrealized potential as
the game port switch inputs.

In this article we'll discuss different types of
switches, how to connect them to the gameport,
and what they can be used for. We'll also take a
look at some devices that you probably never
thought were switches. The objective is to
introduce concepts and capabilities, not a finished
program or system. Hopefully these ideas will stir
your own creativity and prompt you to see

applications for the various devices we'll look at
here.

All the parts used are inexpensive, available from
Radio Shack, and involve a minimum of soldering.
The basic switch circuit in this article will work on
any Apple from the earliest Apple)[to the most
advanced GS. If you've never built a hardware
project before, this is a great place to start (Thank
you. I will. - Ed).

A Switch is a Switch is a Switch

There really isn't much to a switch. It's sole
function is to make or break a connection between
two or more wires. Obviously, these wires cany
electricity. Many people are afraid to experiment
when electricity is involved, but the voltages we will
be working with in this article are only 5 volts at
the most. This is not enough voltage to even feel,
let alone be dangerous.

Electricity must flow in a circle. This is why
collections of electronic components are called
circuits: in order to work, the electricity must flow
completely around the circuit in a \more or less
circular fashion. If the circuit path is broken at
any point, the electricity stops flowing and the
circuit stops functioning. One of the basic uses of
a switch is to control when a circuit functions
(circuit completed) and when it doesn't (circuit
broken). The on/off switch on your Apple)[is an
example.

There are two kinds of electricity: alternating
current (AC) and direct current (DC). The
electricity used in the game port is DC which
means it always flows in one direction. This gives it
a polarized nature involving positive and negative
charges. For our discussion, what flows where is

8/JlS

not as important as the idea that electricity flows in
one direction from one point to another in a
complete and unbroken circuit.

Poles and Throws

There are many kinds of switches and nearly as
many ways to categorize them. Two basic
categories are the number of "poles" and the
number of "throws." A pole corresponds to an
electrical connection. If a switch has a single pole,
a single connection is made or broken when you
operate it. Many wall light switches are single pole
devices: flipping the switch causes one light or
circuit to be turned on or off.

In a double pole switch two connections are made
or broken simultaneously when the switch is
activated. This makes it possible to complete two
separate circuits at the same time with one flip of a
switch. A double pole switch acts like a pair of
single pole switches operated simultaneously by
one handle.

Throwing the Switch

Another category is the number of throws a switch
has. A single throw switch either connects or
disconnects one wire to another. In other words,
flipping the switch in one direction makes the
connection and activates the circuit. Flipping it in
the other way breaks the circuit thereby turning it
off.

A double throw switch behaves differently. It works
by taking an incoming wire and connecting it to
one of two outgoing wires. It's essentially a
selection device with two possible outcomes.

Flipping the switch one way connects the input to
wire "A" while flipping it the other way connects the
input to wire "B". You can route the incoming
signal to either wire "A" or wire "B" but not both at
the same time. Obviously, if you only utilize one of
the two throws in your circuit, you can make a
double throw switch act like a single throw switch.

A double throw switch will have at least three
terminals for wire connections. Usually, the center
terminal will be the wire that will be connected to
one of the other two terminals, depending on how
the switch is currently activated. A double
pole/ double throw switch will have six terminals.

If you're in doubt as to which terminals get
connected to what internally, the best bet is to get a
multi-meter or a meter that has a resistance or

continuity checker built in. You should measure
very little resistance when the contacts are closed
(less than 1 ohm) and an (almost) infinite
resistance when they are open. Obviously, when a
switch is closed the wires it controls are connected.
When it is open the wires are disconnected. By
checking the resistance between the terminals
when the switch is in various positions you can
determine which terminal is connected to which
internal contact. See Fig. 1 for the internal
schematic of several switches.

A switch can be defined by its poles and throws
classification. Switches can have any number of
poles and throws. Rotary switches often have quite
a few of each. Toggle switches usually have just a
few, although I have seen a 4 pole, double throw
toggle switch. Common switches have only a
couple of each. Most off-the-shelf switches fall in
one of four categories: single pole/single throw,
single pole/double throw, double pole/single throw
(not common), and double pole/double throw.

While almost all of these types are available from
your local Radio Shack store, a look in the catalog
reveals that the classifications are abbreviated to
one letter each. A double pole/double throw
switch is abbreviated to a DPDT switch while a
single pole/single throw is listed as a SPST switch.
The switches most often used with the gameport
are of the SPST variety.

Just a Moment, Please

Some switches contain a spring which returns the
switch to its original state after actuation. These
switches are called "momentary" because they are
activated only while the user presses or
manipulates it. A typical example is the fire button
on a joystick. Obviously, the fire button is
activated (on) only while the button is pushed by
the user. After that, the spring returns the switch
to its original resting state (off).

A momentary switch is constructed so that its
normal state is either "open" or "closed". A switch
is closed if it is currently connecting the two wires,
but "open" if the wires are disconnected. Pressing
the switch reverses its state. For example, a
normally open (abbreviated N.O.) switch will be
open if you do nothing to it. If you activate it, you'll
close the switch. The opposite is true with a
normally closed (N.C.) switch: it's normal state is
closed, but it will open if you press it. The fire
button on your joystick is a momentary N.O. SPST
pushbutton switch. Try that line out on your
friends!

8/JlS

Figure 1 - Common Switches

Single Pole I Single Throw

Contacts are not
polarized so either
terminal can go to
5 volts or ground

Single Pole /Double Throw

Contacts are currently touching
so terminals "A" and "B" are
connected. Flipping the switch the
other way will disconnect the
terminals.

Contact "A"

Terminals "A" and "C" are now -----'" A e -+-------,
connected internally by the

Internal movable
contact "C" switches
between stationary
contacts "A" and "B"

contacts. If you flip this switch, B e +----....-
terminals "B" and "C" would

connect. C e +--------'

/
Contact "B"

switch viewed from bottom

Double Pole/Double Throw

This switch is currently
conecting terminals 1 & 2
and separately connecting
terminals 4 & 5.

1 ••

------+ 2. • 5+----

If flipped the other way, this
switch would connect
terminals 2 & 3, and in a
separate circuit, 5 & 6.

...._ ___ --+ 3. • 6+------1

Note that there is never any
internal connection between
terminals 1 & 4, 2 & 5, or 3 & 6.
Terminals 1, 2 & 3 act like one
switch, and terminals 4,5, & 6 act
like another.

About Those Amps and Volts the circuit is accomplished by a set of contacts.
The size and construction of these contacts

Within a switch, the actual opening and closing of determines how much voltage (electrical pressure)

8/1l6

and amperage (electrical current) a switch can
handle. Obviously, if you exceed the contact's
ratings in either category, there can be serious
consequences. There is no danger with the
gameport, though. The voltage and amperage are so
low you can connect to it any switch that Radio
Shack sells with no problem at all.

Connecting the Switches to Your Apple

This next section is about as technical as we'll get
in this article. For those who are not technically
minded, or haven't built many electronic projects.
stay with us through this section and in the end
you'll be able to connect just about any switch you
can think of to your Apple.

The procedure is very simple because of the
gameport. The pushbutton inputs need only a
single resistor in addition to the switch to complete
the circuit. Fig. 2 shows the schematic diagram of
how to connect it up using switch 0. Notice that
there are two diagrams. This is because there two
different connectors used for the joystick on
various Apples. For Apple][,][+, use the schematic
for the 16 pin DIP. For the I /c. I /c+ use the DB-9
schematic. I I e and GS owners can use either one.
The schematics are identical except for the
connector.

For those who don't read schematics, the resistor
goes from the gameport ground pin to the pin of the
switch input you want to use, in this case, switch
0 . Often, I just clip the resistor's leads quite short
and mount the resistor right on the gameport
connector, whether it's a DB-9 or 16 pin DIP. If
you're using a SPST switch, just connect the two
switch terminals to the 5 volt terminal and the
switch input respectively. Switches are not
polarized in any way, so it doesn't matter which
switch terminal goes to the ground pin and which
goes to the pin supplying 5 volts.

Pull-Down Resistors

(Non-''Techies" Can Skip the Next 2 Paragraphs!)

The resistor needed to interface the switch to the
gameport is called a "pull-down" resistor. Inside
your Apple, the pushbutton input lines are
connected to a chip that belongs to the TIL
(transistor-transistor-logic) family. Unconnected
pins on a TIL chip float on their own accord up to
5 volts. This creates a problem since your Apple
thinks any pushbutton input at 5 volts is "pushed".
In essence, if you leave the pushbutton input
unconnected, your Apple will think the switch is

always pushed.

The solution is to use a resistor to pull the voltage
on that pin down near ground level (0 volts). Note
that the resistor goes from the pushbutton input
pin to ground making a connection through the
resistor to ground potential. The Apple then sees 0
volts on the pushbutton input which it interprets
as an open (unpushed) switch. When you push the
switch, the contacts close connecting the
pushbutton input directly to the 5 volt supply pin
forcing it back up to 5 volts despite the pull-down
resistor. Obviously, when this happens the button
appears pushed to your Apple. When you release
it, the pull-down resistor does its job and pulls the
pushbutton input back down near 0 volts.

Hardware information sources (including the Apple
technical manuals themselves) recommend various
sizes for the pull-down resistor. The resistor in my
commercially made joystick measures 560 ohms
which is somewhere in the middle of the range that
the various manuals recommend. The joystick
works well on a][+, I /e. and I /GS. It should also
work fine on the I I c and I I c+. although I have not
had a chance to try it. For your switch projects.
start with a 470 ohm (Cat. #271-1317) or 560 ohm
(#271-020) pull-down resistor. If it doesn't work for
any reason, try either a 680 or 330 ohm resistor.
The value of this resistor is not extremely critical.

A look at the pinout diagrams for the various Apple
)['s reveals that different models have been endowed
with varying numbers of pushbutton inputs. The
I /c and I /c+ have 2, the][,][+, and I je have 3,
and the GS has 4. They are all wired the same
way: a wire from the switch goes to the +5 volts
supply, and the other goes to the pin of the switch
input you desire. A resistor goes from the switch
input pin to ground. This may mean that you have
3 or 4 wires all connected to the 5 volt pin at once,
and just as many resistors connected to the ground
pin, but it doesn't matter: your Apple will handle
this just fine.

The Software Side of Things

The Apple is set up so that each pushbutton input
has a pin in the gameport and its own address in
memory. For example, address 49249 (hex $C061)
is pushbutton #0. (Computers number things
starting with 0.) Address 49250 is pushbutton # 1,
and, if you have an Apple other than a I I c or I I c+,
49251 is pushbutton #2. On the GS, address
49248 is pushbutton #3.

To read a pushbutton, you just read it's address.
In Applesoft, this can be accomplished with a PEEK

8/1Li6

Figure 2 - Paddle Input Switch Connections

Schematic Diagram - D B-9
Use with. Apple Uc, Uc+, Ue, Ugs

... -----,
I
I

/ ::
I I
L-----..1

This can be any SPST swHch
or anything acting like- a SPST
switch. Switch shown in the
open (not pushed) position.

560 ohm
1/4 waH

"Pu11-Down" resistor

5

9

Pin numbers molded into
plastic of DB-9 connector.

Schematic Diagram - 16 Pin DIP
Use with Apple] L][+, lie, Ugs

~-----., I Game- Pod I I 5v /I I I 16
~-----J SwO

2 15

This can be any SPST switch 3 14

or anything acting like- a SPST 560 ohm 4 13
switch. Switch shown in the 1/4 watt 5 12
open (not pushed) position.

/ 6 11

7 10
"Pull-Down" resistor Gnd

8 9

Note: The 16 Pin DIP connector is no longer available from Radio Shack. It is
available from many electronics pads sources such as Digikey and
Jameco. Jameco 's pad number is 16HP. Jameco Electronics,
1355 Shorew ay Road, Belmont, C A 94002 (415) 592-8097

instruction. For example, to read pushbutton 0,
you could use the following code:

X=PEEK (49249)

This instruction sets the variable X equal to the
pushbutton value. The value of X can be anything
from 0 to 255. This is because all Apple)['s use 8
bit memory and the largest value 8 bits can hold is
255.

The switch is actually connected to only one of the
8 bits in the byte you read: the most significant
bit. This bit has a value of 128 in the binary
numbering system, whereas the sum of all the
other bits in the byte amounts to only 127.
Detecting a pushed button is a simple matter of
math: if the value of the byte is 128 or more, the
button is pushed. If the value is 127 or less, the
button is not pushed.

From Applesoft, you can detect a button push
easily. For example, the following program is an
endless loop that beeps the speaker whenever
button #0 is pushed. Otherwise it just goes around
the loop doing nothing.

10 IF PEEK(49249) > 127 THEN PRINT CHR$(7);
20 GOTO 10

Detecting a button push from assembly language is
equally easy. Perhaps the simplest way to do it is
to use the BIT instruction which passes the bit
activated by the switch into the negative flag of the
status register. If you push the button while the
BIT instruction is executed, the negative flag in the
status register will be set to one. There you can
check it with the instructions BMI (branch on
minus) or BPL (branch on plus) instructions. A
BMI instruction will branch when the button is
pushed.

The following assembler language fragment does
exactly what the Applesoft code does above:

LOOP BIT $C061 ;$C061 is button #0
BPL LOOP ;button not pushed, loop again
JSR $FBDD ;$FBDD is the monitor's bell
JMP LOOP ; do loop again

Polling Isn't Only for Herefords

The switch input ports look just like normal
memory to the 6502, 65C02, or 65816
microprocessors. In fact, this family of
microprocessors treats all I/0 (input or output) as
normal memory. This is called "memory mapped

I/0".

Your Apple's microprocessor (like all others) is not
aware of every memory location's activity at the
same time. At the most. it can access one memory
location at a time. The result is that unless you
constantly check the pushbutton's location for
activity, your program might miss a button push.
Checking a location repeatedly looking for an
change of some sort is called polling. Both of the
example code fragments above were organized as
loops that checked the status of the pushbutton
each time around the loop. They are examples of
polling the pushbutton inputs.

Polling loops tie up the microprocessor and are not
the most efficient way to handle many tasks. It is
possible to design hardware to take advantage of
interrupts, a feature most microprocessors have.
In this situation, when you push the button, a
special dedicated input line to the microprocessor
is activated signalling that a device (in this case,
the pushbutton) needs attention.

Interrupt driven systems do not need to poll the
hardware since the microprocessor jumps to a
special interrupt handling routine only when
interrupted by the special interrupt signal line.
This routine typically takes care of what ever the
interrupting device needs and then goes back to
where it was before the interrupt occurs. This is a
much more efficient way to handle a hardware
event such as a pushed button.

While an interrupt driven system is certainly
possible, it is also much more involved in terms of
hardware. Since the point of this column is to keep
the hardware simple (so you can build it in a
weekend!), we'll use software polling of the switch
to know when it is pushed.

Easily Available Switches

The following quick tour through Radio Shack's
switch catalog does not constitute a promotion or
advertisement. It is just an attempt to show the
wide variety of readily available switch types.
Where catalog numbers are shown, they are often
just one example of that type of switch. Sometimes
many different switches of that type are available.

Radio Shack sells a great variety of toggle switches.
Many shapes and sizes are represented with SPST,
SPDT, and DPDT types common. Some of the more
interesting types are momentary (spring loaded
return) and three position toggle switches where
the center position is off. Using a three position
(center om switch makes it possible to activate

8/Jlt6

either of two pushbutton inputs (or neither one)
with just one switch.

You can also buy a variety of pushbutton switches.
Radio Shack has both the push-on/push-off (#275-
1555) and momentary types. Momentary switches
are available in both the normally open (#275-
1547) and normally closed (#275-1548) formats.

Slide and rocker switches are available as are 2
types of rotary switches. There is even an old
fashioned DPDT knife switch.

Pushbutton switches need not be activated
exclusively by a finger. Suppose you mounted a
small (4" by 4") board or plate over 4 pushbutton
switches, one in each comer. Pushing anywhere
on the plate would then activate one or more
switches. Pushing hard enough in the center might
even activate all four. This method could yield
spacial information about where a person pushed
on the plate, not just if he did or didn't.

Quite a few car race games use a joystick's fire
button to activate the car's gas feed pedal. Many
times I've considered using the N.O. momentary
foot switch (Cat. #44-610) for the gas pedal. It
would be more stable if mounted on a supporting
board of some kind along with a foot switch for the
brake pedal. The I I e and GS both have 2 different
connectors for the game port (16 pin DIP and DB-
9). The joystick could use one connector, while
these foot switches could be wired to the other.

Other Switches

Catalog #275-027 is a SPDT mercury switch. The
ball of mercury conducts electricity. When the
angle of the bulb is just right it comes in contact
with one of the other wires inside the glass
envelope completing the circuit. By positioning the
bulb carefully it can be used to detect angles with
respect to the ground.

It can also detect motion. This particular mercury
switch is a double throw type with connection
made when the mercury is at either end. This could
be used to sense a reversal of direction due to the
inertia of the mercury itself. Quadriplegic
individuals often use mercury switches attached to
a headband so that a nod of their head activates
the pushbutton input.

Catalog number 275-017 is commonly known as a
"microswitch". It takes very little pressure (only 5
grams) to operate it. In addition, this model has a
3/4 inch lever. Because of this, it has many
specialized applications. For example, some

quadriplegics have a microswitch mounted on the
frame of a pair of glasses so that the lever can be
manipulated by their eyebrow. Many programs
have been written using the activation of just one
switch to control the entire program. (And this is
now possible for HyperStudiD stacks as welL - Ed)

This particular microswitch has a roller at the end
of the lever making it a natural for applications
involving a cam of some sort. Because we know the
pressure needed to operate it perhaps it could form
the basis of a crude scale for extremely light
weights. lf the switch is closes when an object is
placed on the lever, the object obviously weighs
more than 5 grams.

Unusual Switches

Radio Shack also carries other items that
masquerade as something else. but in reality are
switches. For example, the vibration detector (Cat.
#49-521) is actually nothing more than a
specialized switch. One of its intemal contacts is
secured to the body of the unit, while the other is
mounted on a flexible blade that has a small weight
attached to it. The contacts are deliberately
adjusted so that they touch very lightly making it a
normally closed. single pole/single throw switch.

When a vibration moves the main unit, the inertia
of the weight on the moveable blade causes the
contacts to make and break connection repeatedly
during the vibration. By polling the switch
constantly and watching for the first time the
contacts break connection your Apple can tell when
the sensor detects a vibration. The unit's sensitivity
can be adjusted by tuming a screw that changes
the resting pressure of the contacts. The lighter
the pressure. the more sensitive the unit because it
takes less of a vibration to cause the contacts to
separate.

Home Security Switches

The vibration sensor is part of a whole collection of
home security sensors almost all of which are
switch type devices. This is because most security
systems are designed around a loop of normally
closed switches. If all the switches are closed, the
circuit is unbroken and all is well. The moment
one of the switches opens, (because a door is forced
open or a window broken, for example) the burglar
alarm senses the open circuit and rings bells. alerts
the police, tums on lights, etc.

In the meantime, there is nothing to prevent us
from using these sensors as normal switches that

8/Jl6

can be connected to the game port just like all the
others. As a matter of fact, an Apple would form
the basis of an excellent burglar alarm system, but
that is a subject for another day!

The glass breakage detector (#49-516) contains a
small mercury bulb SPST switch in a housing
which enables you to easily adjust the angle of the
bulb. You mount the unit on a pane of glass with
double faced tape. The idea is to adjust the angle so
that the mercury jiggles and makes or breaks
conta.ct when the glass is broken. For a normally
closed system, the angle is adjusted so that the
mercury just barely makes contact all the time. A
jiggle breaks the contact for a split second. In a
normally open system, the angle is adjusted so that
it just barely breaks contact. In this case, a jiggle
would cause the mercury to make contact closing
the circuit. Either way, this switch can be
mounted anywhere and certainly has many
applications other than detecting broken glass!

Radio Shack also carries a surprising number of
magnetically operated switches. They are intended
to be used on doors and windows where the magnet
is mounted on a moveable door or window and the
switch is attached to the frame. Available in both
N.O. (#49-512) and N.C. (#49-495) styles, when the
matching magnet is in close proximity to the switch
the switch is activated. Move the magnet away and
the switch reverts to it's normal inactivated state.

Experimenters will see all sorts of uses for these.
For example, low speed tachometers, pendulum
clocks where the magnet is secured to the
pendulum, and crude magnet strength
measurement are just a few ideas. It is even
possible to make a homemade anemometer
constructed using the "egg" packaging cups from
L'Eggs pantyhose. These cups can be attached to
the ends of two small pieces of wood mounted at
right angles around a bearing. A magnet can then
be mounted on two of the pieces of wood so that
the matching switch is activated every half turn of
the anemometer. With calibration, measuring wind
speed becomes a matter of measuring the elapsed
time between magnetic switch closures.

Foiled Again

Even the adhesive foil used to detect glass breakage
(#49-502) can be considered to be a switch. It
obviously falls in the normally closed category and
conducts electricity until a crack in the glass
breaks the foil and therefore the circuit. There a re
also 2 heat sensors built to detect fire that are also
usable as switches. Catalog #49-482 will activate at
135 degrees and #49-483 trips at 190 degrees.

The Radio Shack catalog contains several key
operated switches as well. Cat. #49-523 is the
momentary type while #49511 has locking
contacts, and #49515 has a spring loaded cover.
These are normal switches, except that turning
them on or off requires a key. One takes a normal
key, the other a circular one. There is even a
programmable digital key switch (#49-535) where
after entering the correct number sequence on the
calculator-like keypad, the normally open switch
closes for a short time. Obviously. this device was
designed for use with a burglar alarm and it
requires a separate power supply, but nevertheless.
it is a type of switch with unique possibilities when
used with an Apple)(.

Using Switches with the Paddle Inputs

There is a way to use switches with even the paddle
inputs. You will recall that the paddle inputs
measure a resistance - usually a variable resistor in
the joystick or paddle. By using switches and fixed
resistors of known values in parallel, it is possible
to use the game port to measure which switch (or
switches) are open. This is a clever idea borrowed
from several of Forrest M. Mims electronic circuit
idea books.

It works like this: electricity always follows the
path of least resistance. If you place a closed
switch and resistor in parallel the electricity will
always flow through the closed switch. (See Fig. 3).
Because of this, the paddle input measures little or
no resistance which shows up as a very low
reading. lf you open the switch, however, the
electricity has no choice but to flow through the
resistor. This results in a different (higher) paddle
reading. Several switch/resistor pairs can be used
in a circuit to form a n etwork with all sorts of
possibilities.

By carefully choosing the values of the resistors in
a multi-switch system, you can determine not only
if a switch is open, but which ones and how many
are open at a time. For example, if the resistor at
switch one yields . a paddle reading of 23 and the
resistor at switch 2 gives a reading of 106, knowing
which switch is open becomes a simple m atter of
reading the resistance of the circuit. In addition, if
the paddle reading is more than 106, then you
know that both switches are open at once! See Fig.
2.

Carrying th is idea even farther, by choosing
resistors with unique values that compliment one
another, it is possible to make a network of many
switch/resistor pairs. Suppose you used the

8/116

Figure 3- Using Switches with
Paddle Inputs

SPST switch is closed +5
offering nearly ~
zero resistance to
electricity .

.. ---- -- -. I

: I I
I I 1K
I I
I I ohms
I I :> I I ·- -- --.

' '----- To Paddle 7

/
Input

Electricity flows Paddle Input records
through switch reading of zero or
by passing resistor . close to zero .

SPST switch open :
+5 no electdcity can

flow.

~
Electricity mulE
flow through

/resistor.
r---- --. I

I >1 I
I 1K I

I
I

I
I ohms >

I
I

'
.. ______ .

~.,..__ To Paddle
Input

Paddle Input sees 1 K ohm
resistance which results in a
much higher reading.

following resistor values all with a 5% tolerance: No matter which switches were open when, you'd
get a unique reading for each combination. For
example if switches 2 and 6 were open, the
resistors would add making a total resistance of
about 49K. The paddle reading for this resistance

Switch 1: lK
Switch 2: 2.2K
Switch 3: 4. 7K

Switch 4: lOK
Switch 5: 22K
Switch 6: 47K

would also be unique.

There are a few problems with this scheme. The
resistors listed above are off-the-shelf sizes and
attempting to get many different values where all
the combinations add to unique totals less than
150K ohms is difficult. If you added a seventh
switch, the resistor would need a value of lOOK
ohms which would cause problems. Obviously, if
you open switches 6 and 7 at the same time, both
resistances would add (47K + lOOK= 147K) placing
you near the edge of the range for the paddle input
(150K ohms). Opening both switches gives a
paddle reading of 255 so opening additional
switches has no effect. These problems would be
eliminated if you had access to precision resistors
with the values associated with normal binary
place value weighting such as: IK, 2K, 4K, 8K,
16K, 32K, and 64K ohms.

This idea has applications in all sorts of areas.
Like we discussed before, most burglar alarms use
a loop of normally closed switches. Obviously,
when the circuit is broken, the alarm system is
activated, but the question remains, which switch
broke the circuit? An easy solution is to design the
system using the switch/resistor pairs so that the
open sensor switch can be identified by just
measuring the resistance of the circuit.

Four (or more) magnetic switch/resistor pairs could
be mounted on a weather vane and the magnet
attached to the vane itself to form a wind direction
transducer. Wind direction could be determined by
reading the paddle which measures the resistance
of the circuit. Although admittedly crude, this
device plus the anemometer discussed above might
form the beginnings of an Apple-based weather
station.

A Hardware Key

A hardware key is a device that must be connected
to your computer in order for some software to
work. Basically, all that happens is the software
checks for the presence of the hardware key. If the
key is present and responds properly to the
software, all is well. If the key is absent, or not
working properly, then the software aborts and the
user is denied access. In the IBM world, hardware
keys are often connected to a parallel printer port.
It is a relatively expensive, but fairly successful way
of controlling access to a program or data.

We can use the switch/resistor pair idea to make a
hardware key. Follow the schematic in Fig. 5. I
built mine on a small piece of board (half of #2 76-
148) using the 8 position SPST DIP switch (#275-

1301). If you're careful you can solder the resistors
between the terminals for each switch then cut
away most for the board. This small package can
be mounted on the inside of the computer with
double faced tape where it won't be seen. (If
someone doesn't even know the key exists, it will be
harder to "crack".)

Another idea is to mount the circuit board inside a
small box (#270-230) so that it cannot be seen at
all. Only the wires and connector to the game port
would come out of the box. To use the key, just
plug it into the game port of whatever computer
you like. This makes for a portable unit. The
drawback is that to change the switch combination,
you must open the box. If you wanted to get really
fancy, you could mount a gameport connector on
the box as well so you can connect both the key
and ajoystick to one gameport at the same time.

If you have any Apple except a I I c or I I c+, you can
connect it to one of the very rarely used paddles -
paddle input 2 or 3. I used a heavy duty chip
socket (not sold by Radio Shack) where the pins are
large enough to make contact when inserted into
the 16 pin DIP game port connector. By carefully
looping the 2 connection wires around the pins on
the underside of the socket and using a minimum
of solder, you can then insert it into the game port
and plug a regular joystick into this assembly
piggyback style.

This method makes the key transparent hardware
wise, since none of the normally used Apple
features are disabled or interfered with, and also
software-wise since paddles 2 and 3 are used only
on rare occasions. As a result, all your hardware
and software should function normally even with
the key installed 100% of the time.

To check for the key, just read the paddle it's
connected to. If the value retumed is the value you
expect, the key is present and operating. If not,
then the key is absent or has the wrong
combination and your software can then take
whatever action is appropriate.

Not all combinations of switch settings are
desirable. Note that switch 0 has no resistor. It
acts like an on-off switch. If it is off, it effectively
disconnects the key from your computer. This is
useful if you want to use game paddles 2 or 3 for
something else. When nothing is connected to a
paddle when it is read, the PDL routine returns a
value of 255. As such, using any combination of
switches where switch 0 is off will result in a value
of 255. This doesn't provide much security
because the paddle reading is the same as if the
key weren't there (255). In this case you could

disconnect the key and still gain access to whatever
you're trying to protect!

If you set both switches 7 and 8 off in your
combination, the paddle reading may also retum
255 since those two resistors together add to nearly
150K ohms, the resistance that retums a paddle
value of 255. The best solution is to use either
switch 7 or switch 8 (or neither), but don't set both
to "off' in any one combination. The general rule is
this: use any combination of switches you like.
just be sure they don't retum a paddle value of 255
since this doesn't provide any security.

Using the Hardware Key

To use the key, flip the switches to any
combination you like (and write it down!) then run
this single line of Applesoft code:

PRINT PDL(X)

where X is the number of the paddle you are using.
Write down the value you get as well. Each switch
combination will yield a different paddle reading.
Sometimes the hardware will altemate between 2
different paddle readings (like 161 and 162, for
example) for a given combination of the switches on
the key. To detect this, run the one line program 8
or 10 times. (It is best not to write a loop in
Applesoft to test for this because reading the
paddle quickly causes it to yield slightly different
readings.) If the results are steady, then fine. If
the values altemate. note what they are.

Once the combination is set. the key is ready to
use. To protect your software or prevent
unauthorized access to your data, you'll need to
read the paddle that the key is connected to at one
point. When you check for the key is up to you.
Typical times are during boot up when you can
deny access entirely without the key, or the first
time someone tries to read or write to a disk. If you
like, you can allow reading, but disallow writing to
disk if the key is absent. This would protect
someone from altering your data. You could also
allow writing but prevent reading. This way you
could have someone enter data. but not read any
off disk.

Checking for the key in your own program is about
as simple as you can get. You can do it by issuing
a command like:

10 KEY=PDL(X)

If key's value equals the value you got when you set

the combination, then all is fine. You may have to
allow for two correct values if the readings jitter
back and forth for a particular combination of
switch settings.

Neat Stuff

I ran across a neat publication that hardware
hackers might be interested in. It's a magazine
called "Electronics Handbook" and although some
of you already know about it, many might have
missed it since it is published quarterly. It's aimed
at people who like to build projects and gadgets at
the beginning or intermediate level.

It's got book reviews of interest to hardware
hacking types. an ongoing tutorial on different
components (this issue: FET's). construction
techniques such as how to solder, an annotated
catalog listing showing what various electronics
manufacturers offer, and lots of circuits. many with
only 1 or 2 transistors or IC's. The issue I read
even had an article on why your 1V starts with VHF
channel 2 instead of 1. In short, many of the ideas.
projects, and circuits could easily be adapted for
use with your Apple. Subscriptions are $12.00 per
year (4 issues). Contact: Electronics Handbook,
P.O. Box #5148, North Branch, N.J. 08876.

Want other hardware ideas? Check out a book on
robotics. These days robots and computers go
hand-in-hand. One current title is 'The Robot
Builder's Bonanza - 99 Inexpensive Robotics
Projects" by Gordon Mccomb published by TAB
Books (#2800) . This 326 page book features many
photographs. diagrams. circuits, and illustrations
in 33 different chapters. Chapter topics include the
use of stepper motors, robotic arms, circuits to
imitate the sense of touch and sight, speech
synthesis, smoke and heat detection, and many
others. Almost all of these ideas and many of the
circuits could be connected to your Apple with little
or no adaptation. With a little imagination you
could have your Apple controlling robot arms and
all sorts of electromechanical things.

A Simple Security System

Although there are 255 unique
settings of the 8 switches, only
one pattern of switch settings
will provide the "correct"
resistance.

+5 volts

1K ohms

2.2K ohms

4.7K ohms

10K ohms

22K ohms

47K ohms

1 OOK ohms

Note that there is no resistor here.
This switch acts like an on/off switch.
'w'hen it is open, the paddle input will
return a value of 255.

On bootup, a "HELLO" program can checl
the paddle input port for the correct
resist.ance. If the paddle reading
matches with the expected reading, the
program proceeds normally. If not,
access can be denied.

The circuitr-y for this "lock" can be plac
very small circuit board and stuck on th
of your Apple's case with double faced t

Electrica 1 connection can be made using
duty 1 6 pin DIP socket by wrapping the ~
around their respective pins and pluggin
the game port piggy back style. A norm<
can be plugged into the piggyback socket
e 1ectrica 1 or phy sica 1 interference.

Using these 2 switches toge·
but note that they tot a 1 1 4 71
maximum the gameport hanc
It is best to use only one of·
switches at a time when dec
"combination" of your lock.

To Paddle
L---------- Input

8/JltB

Classifieds
In the early going, we had "Hired Guns", classified
ads for programmers looking for projects. This
went over well enough that we are opening up the
service to all kinds of ads. Hardware, software, ser
vices, programming, etc. For an indefinite intro
ductory period, we're still offering this service for
free. Freebies are limited to 10 lines at 70 charac
ters per line. You'll pay a dollar per line thereafter.

Classifications:

001
002
003
004

Hardware, Software For Sale
Help Wanted
Work Wanted (formerly Hired Guns)
Miscellaneous

There are a couple caveats:

• no X-rated BBS ads permitted

• we reserve the right to cancel an ad at any time
and for any reason, including but not limited to
space considerations.

We welcome commercial use of this space. If you've
got a program to sell, you should list it here.

001- Hardware/Software For Sale

If interested call Scott Scheuerman at (607) 336-5850. Make
me an offer on any title or card. All can be sold separatly or in
dundles. Most software titles come with full documentation but
some have been lost over time. All are originals. I have no set
prices so make any offer. I might take it.

Hardware for sale:

1) Generic 80 column card II+
2) PCPI AppliCard with 192K 6 mhz II+, lie
3) Mocking Board speech and sound card, II+, lie
4) Apple Dumpling Parallel printer interface II+, lie
5) Crackshot copy card II+
6) Apple SCSI Rev C Interface II+, lie, llgs
7) Cirtech 512K Battery Backup RAM card II+, lie, llgs any slot
no wires draws power from slot. Great for BBS's or booting
system software 1 OOns RAMs. Software, Inc.

8) EOIC 2400 Classic Internal modem

Software for sale:

Paintworks Plus GS
TML Pascal I GS with source code and speech lib.
LPA Micro Prolog
Visible Computer 6502 Assembly Teacher
Turbo Pascal Version 3.0 CP/M

FAST EXTENDED PRECISION APPLESOFT
Choose 12, 14, 16, or 19 digits precision. Modifies + - *I".
SOR, LOG, EXP, SIN, COS, TAN, ATN. Runs at assembly lan
guage speed on 64K Apple II+ and lle!llc/llgs. No compiling -
modifies Applesoft and supports the same comands. Test ver
sion available for comments. $25.00 ppd on fast-load DOS 3.3
5.25" disk. RFI Software, 9719 Crystal Lake Drive, Woodinville,
WA98072

003 - Programming Work Wanted

Bryan Pietrzak. 202 E John, #A 16. Champaign, II. 61820.
GEnie: [BRYAN.ZAK]. America Online: [Bryan Zak]. Can do
Pascal or 65816. I'll only work with 16-bit stuff. I like
databases, GS/OS, NDAs, CDAs, desktop apps, text screen
stuff. You name it.

Douglas Gum I O.P.Software, P.O. Box 1042 Mahomet, IL
61853 (217) 586-2904 I work mostly in 8-bit assembler,. Have
done Awks enhancements, graphics/animation, and loads of
custom patches for making 'incompatable' programs work
anyway.

David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-371-
4350 eves. or leave message. GEnie: [DDEL Y], AOL: "Dav
eEiy". Experienced in 8 and 16 bit assembly, C, Forth and
BASIC. Available for hourly or flat fee contract work on all
Apple II platforms (llgs preferred). Have experience in writing
desktop and classical applications in 8 or 16 bit environments,
hardware and firmware interfacing, patching and program
maintenance. Will work individually or as a part if a group.

Jeff Holcomb, 18250 Marsh Ln, #515, Dallas, Tx 75287. (214)
306-071 0, leave message. GEnie: [Applied.Eng], AOL: "AE
Jeff". I am looking for part-time work in my spare time. I prefer
16-bit programs but I am familiar with 8-bit. Strengths are
GS/OS, desktop applications, and sound programming. I have

8/1L6

also worked with hardware/firmware, desk accessories, CDevs,
and inits.

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-752-9731
(day), 817-666-7605 (night). GEnie: Tom-Hoover; AOL:
THoover; Pro-Beagle, Pro-APA, or Pro-Carolina: thoover.
Interests/strengths are 8-bit utility programs, including
TimeOut(tm) applications, written in assembly language.
Looking for "part-time" work only, to be done in my spare time.

Jay Jennings, 14-9125 Robinson #2A, Overland Park, KS,
66212. (913) 642-5396 late evenings or early mornings. GEnie:
[A2.JAY] or (PUNKWARE]. Apple llgs assembly language
programmer. Looking for short term projects, typically 2-4
weeks. Could be convinced to do longer projects in some
cases. Familiar with console, modem, and network
programming, desk accessories, programming utilities, data
bases, etc. GS/OS only. No DOS 3.3 and no 8-bit (unless the
money is extremely good and there's a company car involved).

Jim Lazar, 1109 Niesen Road, Port Washington, WI 53074,
414-284-4838 nights, 414-781-6700 days. AOL: "WinkieJim",
GEnie: [WINKIEJIM]. Strengths include: GS/OS and ProDOS 8
work, desktop applications, CDAs, NDAs, IN ITs. Prefer working
in 6502 or 65816 Assembly. Have experience with large and
small programs, utilities, games, disk copy routines and writing
documentation. Nibble, inCider and Caii-A.P.P.L.E. have
published my work. Prefer 16-bit, but will do 8-bit work. Type of
work depends on the situation, would consider full-time for
career move/benefits, otherwise 25 hrs/month (flexible).

Chris McKinsey, 3401 Alder Drive, Tacoma, WA, 98439, 206-
588-7985, GEnie: C.MCKINSEY. Experience in programming
16-bit (65c816) games. Strengths include complex super hi-res
animation, sound work (digitized and sequenced), and
firmware. Looking for new llgs game to develop or tO port
games from other computers to the llgs.

Lane Roath, Ideas From the Deep, 309 Oak Ridge Lane,
Haughton, LA 71037. (318) 949-8264 (leave message with
phone number!) or (318) 221-5134 (work). GEnie: L.Roath,
Delphi: LRoath. Available for part time work, large or small for
any of the Apple II line, especially the llgs. Specializing in disk
1/0 graphics and application programming. Wrote Dark Castle
GS, Disk Utility Package, WordWorks WP, Project Manager,
DeepDOS, LaneDOS, etc. including documentation. Currently
work for Softdisk G-S. Work only in Assembler.

Steve Stephenson (Synesis Systems), 2628 E. Isabella,
Mesa, AZ, 85204, 602-926-8284, anytime. GEnie: [S
STEPHENSON], AOL: "Steve S816". Available for projects
large or small on contract and/or royalty basis. Experienced in
programming all Apple II computers (prefer IIGS),
documentation writing/editing and project management. Have
expertise in utilities, desk accessories, drivers, diagnostics,
patching, modifying, and hardware level interfacing. Willing to
maintain or customize your existing program. Work only in
assembly language. Authored SQUIRT and Checkmate
Technology's AppleWorks Expander, managed the

ProTERM(tm) project, and co-invented MemorySaver(tm)
[patent pending].

Jonah Stich, 6 Lafayette West, Princeton, NJ, 08540. (609)
683-1396, after 3:30 or on weekends. America Online
(preferred): JonahS; GEnie: J.STICH1; InterNET:
jonah@amos.ucsd.edu. Have been programming Apples for 7
years, and can speak Assembly (primary language), C, and
Pascal. Currently working on the GS, extremely skilled in
graphics, animation, and sound, as well as all aspects of
toolbox programming. Prefer to work alone or with one or two
others. Can spend about 125 hours a month on projects.

Loren W. Wright, 6 Addison Road, Nashua, NH 03062, (603)-
891-2331. GEnie: [L.WRIGHT2]. Lots of experience in 6502
assembly, BASIC, C, Pascal, and PLM on a wide variety of
machines: Apple II, llgs, C64, VIC20, PET, Wang OIS. Some
llgs desktop programming. Have done several C64<>Apple
program conversions. Numerous articles and regular columns
in Nibble and MICRO magazines. Product reviews and beta
testing. Specialties include user interface, graphics, and printer
graphics. Looking for full-time work in New England and/or at
home contract work.

8/11(6

Ross Indulges in Ironic Hacking

rStringList in Theory and Practice

by Ross W. Lambert

Why in the world would I want to tackle some
thing as off -the-wall and unexciting as the string
list resource? Well, there are three reasons, really.
The first is that it is an easy resource format to un
derstand. The second is that it is an easy resource
to create. Third, it is a wonderful tool, useful in
many situations.

Convinced?

Nah, me neither. So I'll prove each point as we go ...

Wha Issit?

A string list is exactly what it sounds like: a list of
strings. The first word in a given string list re
source is a count of the number of strings con
tained therein. Hence you can have up to 65535 of
'em. What follows thereafter is simply a bunch of
Pascal strings, that is, length byte/string/length
byte/string, ad nauseum up to the number of
strings in that resource.

Easy.

They are useful little buggers in a variety of situa
tions. the most obvious application being any time
you need to keep track of a list of strings (yeah, I
know, "Duh".)

For example, let's say that you wrote a spelling
game for educators. You could (and probably
should) include an option wherein the teacher can
add their own words. You could store the word list
in a separate text file, but there is a good chance
the words and your program could get separated.
Then you'd have to ask where the data file lived,
etc. This whole song and dance is tacky when
avoidable . And it is avoidable.

If, instead, you stored the spelling words in a string
list resource, they'd always be handy. Heck, if
there was room and their attribute bits were prop
erly set, they'd even be in RAM.

It don't get better'n that.

Other Uses

Now if you want weirder applications of the beast
ies, I got 'em. I like to muck around with Post
Script, the page description language gurgling
around inside your favorite LaserWriter liNT or bet
ter. Since PostScript programs are merely lists of
commands (in ASCII no less), string lists are abso
lu~ely ideal_. I can have one utility that does a jillion
th1ngs. It JUSt sends a different string list to the
printer depending on what I want to do.

And if you're into copy protection, you could "sign
up" the user when the program is first run, saving
their name and/ or serial number into a string list
resource. From then on the startup screen would
say "Licensed to Joe Smith" or whatever. This is
big time stuff on the Mac. All the really expensive
applications do it even though it stops absolutely
nobody. The copy of Microsoft Word that was on
my ex-superintendent's hard drive used to an
nounce that it was licensed to Kinko's Copy Center.

There's probably less annoying and more worth
while uses of string lists than psilly pseudo-copy
protection. But since many of you will find yourself
doing work for more annoying and less worthwhile
project managers, I thought I'd toss it out.

Okay, How Do I Get One?

At the present state of the tools available, you have

Figure 1 - LLRE's Hex Editor

a123~~6789ABCD£F

o~ ao o~ 5~ 68 69 73 02 69 73 01 61 05 1• 65 73 o !
7nE

Export...) (Attributes ...)

I I

The import button: allows you to suck up a
data fork into your current resource.

50 POKE S,NS - INT (NS I 256) * 256
60 POKE S + 1, INT (NS I 256)
70 s = s + 2
80 FOR X = 1 TO NS
90 READ T$:LT = LEN (T$) :REM get str
100 POKE S, LT : REM POKE length byte
120 FOR C = 1 TO LT REM POKE Chars
130 POKES+ C, ASC (MID$ (T$,C,l))
140 NEXT
145 S = S + LT + 1 : REM inc byte count
150 NEXT
160 PRINT D$;"BSAVE STR.DATA,A16384,L";S-

16384
199 END
200 REM
201 REM Change these to suit
202 REM
210 DATA 4 : REM number of s trings
220 DATA "This","is","a","test."

This quick and very dirty little Applesoft pro
gram does nothing but create a block of memory
that looks like string list resource and BSA VE
it. The rest is up to LLRE.

1...----------------------~ The first thing to do in LLRE is to create a new
two choices for creating a string list resource.
Those of you with APW I Orca and Rez can and
should use Rez. I'll show you how to do that in a
moment.

The rest of you should use LLRE (Jason Coleman's
Low Level Resource Editor - shareware on GEnie or
on our September disk) and Applesoft. 1 Hehehe. I'm
not kidding.

LLRE has one really neat feature - you can import a
data fork into a resource fork. That means that
you can format data using whatever tools you have
at your disposal - word processors. the monitor.
Applesoft, whatever - and LLRE will deposit it into
the resource of your choice.

I found the easiest scam for creating a data file in
the string list format was to use Applesoft. Here's
the listing ...

Listing 1 - StringList Data Creator

10 D$ = CHR$ (4)
20 s = 16384
40 READ NS : REM get number o f strings

1. Matt: yes, yes, yes, I know. Rez does everything and isn't
it really stupid to use Applesoft. I agree wholeheartedly -
for those who have Rez and APW/Orca. But for those who
don't, isn't it silly to spend $180 (suggested retail total) to
do one of the very few things that Genesys cannot yet do?
I can jump through a hoop for $180.

resource file. Having done that. open it and select
the NEW button.

You will then be prompted for the resource type (by
number) and ID. The number for the rStringList is
$8007. The ID is whatever you want it to be. Make
it easy to remember since you'll have to use the
same ID number when developing your source
code.

At this point you will be dumped into the hex editor
(see Figure 1). where you want to select the Import
button. Find your data file (I named it STR.DATA
in the Applesoft program. You can name it whatev
er suits ya.). select it, save the resource, and you're
done.

If you compile or assemble an application that uses
this string list. you probably ought to use a differ
ent file name and copy the resource fork to the
application via Rez or LLRE. This way you won't ac
cidentally overwrite your new resource.

This is not strictly necessary with Merlin 8/ 16+.
My version. at least. only re-creates the data fork
when you do a new assembly, thus your resource
fork is preseiVed between versions of the applica
tion. This is a very nice touch. Thank you Glen
Bredon. wherever you are.

Rez

The procedure in Rez is simplicity itself. It's not as

much fun as doing the totally ironic and bizarre
(i.e. an Applesoft resource developer!), but we can't
have everything.

Here's the Rez code to generate the string list re
source:

Listing 2 - Rez Code for rStrlngList Resource

I* Sample Simple Rez Stuff *I

I* So you can access predefined goodies ... *I
#include "Types.rez"
resource rStringList (001) {

} ;

{ "this",
"is",
"a",
"test"

I just type "compile rez.source keep=outputfile" at
the command line to actually create the resource.

Where did it go, George?

The most common complaint I hear about resourc
es is that they're harder to use (and find) than data
embedded in source code. Even if that were true,
their benefits outweigh the disadvantages. But for
the sake of simplicity, I have created a macro (Ge
tResStr) and subroutine that will make string list
resources just as easy to use as embedded strings.
If you call the macro with just a little information
handy, it will return a pointer to the string so you
can work with it just like normal.

There is one really big GOTCHA, however.

If you expect your string to stay where GetResStr
says it is, the resource must be locked down. The
routine locks it down on its own (for safety sake),
but it does not unlock it. It couldn't really, since it
has now way of knowing when you're through with
the data. (By the way: When you create a resource,
if you set the resource attributes bits such that the
resource is locked when loaded, you don't have to
lock them down from your program. That being the
case, you could remove the HLock call in the
DigOutStr subroutine.)

Keep in mind, however, that there is no reason to
keep a resource locked in place if you're not going
to use it again, so some judicious memory manage
ment is in order. Too many locked blocks can frag
ment memory (A Bad Thing).

For more info on locking and unlocking blocks,
check into chapter 12 of volume 1 of The Apple Jigs

Toolbox Reference. A block of memory that hap
pens to be a resource is not a whole lot differerent
than any other block - as far as the Memory Man
ager is concerned. But there are two very important
caveats if you dink with things on your own (as op
posed to setting the attribute bits at the time of cre
ation): 1) do not, I repeat do not, dispose of a
block (i.e. handle) that the Resource Manager
has allocated, and 2) unlock the handle immedi
ately after you're through with it (presumeably after
printing the string, for example).

The latter is just due to my gut feelings, the former
is an absolute, chiseled in concrete, Thus Sayeth
Apple dictum.

The following code is called GetResStr because you
pass the macro the ID of the resource you're after
(That's your ID, boys and girls. GetResStr assumes
we're working with rStringLists, which is the re
source type.) the number of the string you're after
(the first in the list is 1, etc.). and the address
where you'd like the address of your string
deposited. This last parameter could be the ad
dress of (i.e. a pointer to) a variable if your primary
environment is a higher level language.

Please NOTE: This is not a complete program. I'll
have a complete demo on the monthly disk, but
space constrains me from including the entire thing
here. All you have to do to create a your own demo
is to throw in startup, shutdown, and window rou
tines. Open a window and draw a few strings from
the string list and you've got it.

Honest.

The bit twiddlers amongst you will probably wonder
why I set up the temporary data area and pushed
and pulled values off the stack (using the Pascal
protocol).

Well, for one thing it makes the subroutine self
contained. That is, you could rip it out and put it
into a special subroutine module external to the
main body of the program. With careful planning,
you can have a generic subroutine module that
never needs to be reassembled, just linked into ev
erything you write. That is why Tempdata,
Tempint. etc. are there - they are special generic
data locations used by all of my subroutines. Saves
a few bytes, anyway.

The syntax for a call to GetResStr is pretty easy:

GetResStr ResiD;StrNumber;Ptr

ResiD, you'll recall, is a long word, string number is
an integer (two bytes). and Ptr is the address where
you'd like the address of the string deposited.

8/Jl6

Miscellaneous Merlin Tip of the Week: Name
your linker command file "Me" or "It". That way
when you want to build your app it is just a quick
"Link Me" from the command box. Believe me, that
is much easier to type than "Link Snazzy
ness.cmds" and the like.

Listing 3- Ross's ResStr Routines

**

* *
* FN GetResStr *
* *
* by Ross W. Lambert *
* Copyright (C) 1990 *
* Ariel Publishing, Inc. *
* Most Rights Reserved *
* *
* Merlin 8/16+ Assembler *
* *
**

*

* NOTE: This is library code only - this is NOT
* a n application that can be assembled.

* For resource stuff

MyResiD
rStringList

$00000001
$8007

*** macro definitions

* Check stack checks a long address on the stack
* for validity wi thout disturbing it.

* The macro conditions the zero flag on exit. A
* zero means the address on the stack is zero (an

*invalid pointer or handle), non-zero means
we're* okay.

CkStack mac
lda
ora
eom

1,s
3,s

* Syntax: GetResStr ResiD;StrNumber;Ptr

* This routine sets the carry if the string
number * request ed is out of range (i . e. there's
not that * many strings in the string list) .

* The range of strings numbers you can request
* goes from 1 to n.

* GetResStr locks the string list down, but
does
* not unlock it!

GetResStr mac
PushLong t]1 ;push the resource

ID
PushWord t]2 ;and the t of str

wanted

jsr DigOutStr

PullLong]3 ;pull address into
ptr

eom ;check carry for
success/failure

* Subroutines

DigOutStr

string

ID

PullWord RetAddr

PullWord Tempint

PullLong TempiD

pha
ph a

;number of

; our resource' s

;result space

;the type as Apple defined it
PushWord trStringList

;my resource's ID as I defined it
PushLong TempiD

LoadResource

CkStack ;neat macro
beq booboo

lda
sta
lda
sta

HLock

1,s ;copy hndl to resrce w/o
TempHandle ; popping from stack
3,s
TempHandle+2

;lock it down

lda $00 ;save direct page 00 - 03
ph a
lda
ph a

$02

deref TempHandle;TempPtr

lda TempPtr

sta 0
lela TempPtr+2
sta 2
lela [00] ;this gets # of strings

cmp Tempint ;compare to one we want

;if # of strings is equal or greater then okay
bcs okay

;set carry if out of range or resource error
booboo sec

jmp exitfn

;offset - first string is after string count word
okay ldy #2

sty Tempdata
ldx #1 ;our counter

:loop cpx Tempint ;is this string we
want?

beq :calcptr ;yep
clc
lela [00] ,y ; get length byte
and #%00000000 11111111 ,;mask off junk
inc ;bump length byte + length of str

;Tempdata holds 2 + length bytes of each string
adc Tempdata
sta Tempdata
tay ; slide over to y for new

offset
inx ; inc the count
bra :loop

:calcptr clc

lela Tempdata ;offset of 64K or
less

adc TempPtr ;add to ptr's low
word

sta TempPtr ; and store it back
lela i$00 ;in case of a carry
adc TempPtr+2
sta TempPtr+2

pla
sta $02 ; restore direct

page
pla
sta $00
clc ;make sure carry is clear on

exit

;put pointer to string on stack

exitfn PushLong TempPtr
PushWord RetAddr ;point me home

rts

* Temporary data for subroutines

Tempdata adrl 0
TempHandle adrl 0
TempiD adrl 0
TempPtr adrl 0
Tempint dw 0
RetAddr adrl 0

Note: VaporWare is primarily for entertainment purposes. The views expressed within are those of the author
and do not necessarily reflect the views of Ariel Publishing managment or editorial staff.

by Muphy Sewall, from the APPLE PULP, HUGE Apple Club (E. Hartford) News Letter

A Real 3-D Display: Texas Instruments has shown a "bubble" display two feet in diameter which "floats" three
dimensional images within a volume. Multiple viewers can see the display from any side without special goggles
or eyeshades. Dubbed "Omniview," Tl's patent application describes the technology as a "real-time, auto
stereoscopic, multiplanar 3-D display system." Initial commercial applications may appear as early as next year. -
Info World 20 August

Motorola 68040 Delayed Again: Although volume production had been planned for last month, Motorola officials
found a few last minute bugs (described as "very minute") to correct. Volume production of the chip for machines
already introduced by Hewlett-Packard and NeXT and anticipated from Apple is now scheduled for the end of
October or early in November. NeXT's planned October 15 shipping date seems likely to slip. -Info World 17 Sept.

Intel 1586 Design Note : Microsoft's William Gates and Intel's David House are discussing whether to build the
graphics primitives of Windows 3.0 and OS/2's Presentation Manager into the mask of the forthcoming i586 chip.
Such a decision would markedly improve the performance of both graphic user interfaces. - PC Week 27 August

Downward Compatibility: Microsoft's MS-DOS 5.0 will contain a Set Ver (set version) command that will allow users
to make the operating system emulate earlier MS-DOS versions from 2.0 up for those applications that turn out to be
incompatible with DOS 5.0. - Info World 20 August

Even Larger Capacity Hard Drives: IBM is said to be planning to announce a 200 MByte magneto-optical drive with
a $1 ,500 retail price. Only 10 years ago the 2 Mbyte hard drive introduced with the Morrow computer was viewed as
large enough to meet anyone's storage needs. Now hard drives with capacities exceeding the Morrow's by over 1 ,000
times (2 gigabytes) are described as "just around the corner."- Info World 10 September and PC Week 27 August

Another Source of Laser Printers: Compaq appears to be planning an aggressive entry into the laser printer
business. The company will manufacture printers in Mexico that will print faster and cost less than the popular HP Ill.
-PC Week 27 August

ClarisShare: Now that Apple has decided not to spin-off it's software division after all, the Claris label will begin
appearing on important Apple software including HyperCard, AppleShare, and probably, the as yet unannounced
AppleMail program. A Windows 3.0 version of Claris's FileMaker product is in the works, and Claris executive want to
proliferate Apple technology onto other platforms and create "interoperable superworkgroup applications" (applications
that could be shared among Macintosh, PC, and Unix workstations connected to a network) . - lnfoWorld 27 August

HyperCard 2.0 Delayed (Again): Apple tried and failed to get numerous Apple publications to delay for a month
advertising that will appear in the November issues. The guess is that the ads (and stories) will be about HyperCard
2.0 which has been delayed until November, at least. The ''final" beta version was sent to developers in late
September. - read on AppleLink 19 September

dBase for UNIX: Now that Ashton-Tate has finally shipped dBase IV 1.1, the company has begun beta testing a
version for UNIX. No definite release date or price has been set as yet.- Info World 20 August

Intel's 50 MHz i486 Delayed.
Intel's microprocessor group president, David House, has admitted that plans to deliver a 50 MHz i486 CPU this year
were "overzealous." Large PC manufacturers have been told that volume production will not begin until sometime in
early 1991 . Meanwhile, PC manufactures will also have to adapt to Intel's soon to be announced decision to stream
line their product line. By the end of next summer, Intel plans to slim down to only three CPU's -- the 20 MHz
80386SX, the 25 MHz 80386, and the 33 MHz i486.- PC Week 27 August and 10 September

Executive Pen-Based Computer: Active Book Company will introduce a pen to glass input (with optional keyboard)
computer next spring. The four pound notebook sized machine will cost about $2,000 and receive FAX and record
voice mail as well as edit documents and search data bases. The CPU will be an Acorn RISC processor and the
planned operating system is UNIX-based Helios, but licensing Go Corporation's technology (see last month's column)
has not been ruled out. Active Book's computer also will come with an MS-DOS emulator and battery life of eight to
ten hours is anticipated. -Info World 20 August

Miniature Production Studio. Newtek Inc. of Topeka, Kansas will offer a $1,595 VLSI board named the "Video
Toaster" for the Amiga Computer. When used with Newtek's point-and-click Light Wave software (bundled with the
Toaster), the Amiga becomes a miniature production studio for less than $5,000 that can perform numerous editing
functions at a professional level. Newtek's Toaster is a video switcher, effects generator, dual frame buffer, and
character generator with a 16.8 million color, RT-170 resolution NTSC output. The largely intuitive New Wave
software is accessible to users without specialized video training. -Info World 3 September

BULK RATE
U.S. POSTAGE

PAID
PATEROS, WA
PERMIT NO.7

ecial Renewal Order Form
Place a check in each box that applies, add it all up, select your payment method, and mail to Ariel Publishing,
Inc., Box 398, Pateros, WA 98846. Or call (509) 923-2249 voice or (509) 689-3161 fax. Don't worry about
your name and address (too much). We've got it on your mailing label above!

D
D

D
D
D

D
D

Sign me up for another insightful and enlightening year of 8/16 magazine (hard
copy) $29.95
Sign me up for two more insightful and enlightening years of 8116 magazine (hard
copy) $56.00

Sign me up for another 8 megs or so of source code and utilities! I want one more
year of 8116 on Disk $69.95

I want nearly 16 megs of goodies. Give me 8116 on Disk tor two more years
$119.95

I can't live without it even thou h I can't afford a full year. Give me 6 months of 8116
on Disk tor $39.95

What a deal! Send me SSSi's DeskPak for $15.00 and then also extend all of my sub
scriptions one month. This is okay to do even if you're not renewing!

Since I ordered both 8116 on Disk and the hard copy of the magazine, I get to deduct
$1 0!!! Subtract $10 from total!

GOTCHAS: If you live in Canada or Mexico, please add $5 per year per subscription (both disk and hard copy -
sorry!) If you live outside North America, add $15 per year per subscription (disks go first class, the magazine
goes Publisher's Periodical rate. First class magazine is possible for $45 per year in addition to the subscription
price.) Washington State residents add 7.5% sales tax.

Method of payment (circle one):

Check Visa/MC Bill Me

If card, then# ______________ _
Expiration Date ______ _

Signature ________________ _

Grand Total (add
A,B,C, and D):
$ ___ _

	8/16 - Picture Perfect in Pascal: Phil Doto Decodes SHR
	The Publisher's Pen - Ross W. Lambert
	Classic Apple Hacking: GenDraw: Jay Does 8 bit - Jay Jennings
	IIGS Programming: Pascal Pics Part II - Phil Doto
	From the House of Ariel
	The Weekend Hardware Hacker: Giving Your Apple a Real Switch - David Gauger
	Classifieds
	The ToolSmith: rStringList in Theory and Practice - Ross W. Lambert
	VaporWare - Murphy Sewall

